跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 14:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林采羭
研究生(外文):Tsai-Yu Lin
論文名稱:整合定量與磷酸化蛋白體學探討鋅指蛋白ZNF322A在人類肺癌A549細胞中所扮演的調控角色
論文名稱(外文):Integrative Quantitative Proteomics and Phosphoproteomics Reveal the Regulatory Role of ZNF322A in Lung Cancer A549 Cells
指導教授:阮雪芬阮雪芬引用關係
指導教授(外文):Hsueh-Fen Juan
口試委員:黃宣誠王憶卿李岳倫
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:103
中文關鍵詞:鋅指蛋白致癌基因蛋白質體學磷酸化蛋白質體學羥基酸修正金屬氧化物層析相對定量同位素標定
外文關鍵詞:zinc-finger proteinoncogeneproteomicsphosphoproteomicshydroxy acid-modified metal oxide chromatography (HAMMOC)isobaric tag for relative and absolute quantitation (iTRAQ)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋅指蛋白322A (ZNF322A)屬於C2H2型鋅指蛋白家族並擁有轉錄因子的功能。近年的研究指出,在肺癌病患檢體中,ZNF322A有過度表現的現象,可能為肺癌的致癌基因之一,然而,ZNF322A調控的網路尚未被徹底解析。在本研究中,我們結合了定量蛋白質體學及磷酸化蛋白質體學的方法,分析ZNF322A在人類肺腺癌細胞株A549的調控網路,利用羥基酸修正金屬氧化物層析(hydroxy acid-modified metal oxide chromatography, HAMMOC)、相對定量同位素標定(isobaric tag for relative and absolute quantitation, iTRAQ)及液相層析與串聯式質譜儀(LC-MS/MS)的技術,我們發現2754個磷酸化位置對應到1822個磷酸肽及976個磷酸蛋白上,其中共有138個磷酸化位置受ZNF322A調控。比對先前的蛋白質體資料並利用功能富集、生物網路和磷酸化基序列分析等生物資訊學的方法,我們發現ZNF322A可能參與RNA加工及細胞週期等調控,且熱休克蛋白27 (HSP27)的Ser82磷酸化位置有顯著的表現量上升,並與轉錄起始因子eIF2α一同參與啟動未摺疊蛋白反應(unfolded protein response),另外,IRS1 Ser1101磷酸化位置的表現量上升可能參與調控葡萄糖的運送,結果指出HSP27與IRS1為ZNF322A下游的調控磷酸化蛋白。本研究對於ZNF322A在人類肺癌細胞中的分子調控機制有更深入的了解,期望能對肺癌的治療發展有所貢獻。

ZNF322A is a transcription factor that belongs to C2H2-type zinc finger protein family. Recent study revealed that ZNF322A is a potential oncogene in lung cancer patients. However, the network regulated by ZNF322A was still unknown. In this study, we integrated quantitative phosphoproteomic and proteomic analyses for ZNF322A-silencing lung cancer A549 cells. Hydroxy acid-modified metal oxide chromatography (HAMMOC) phosphopeptide enrichment method, and isobaric tag for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS were applied. We identified 2754 phosphosites corresponding to 1822 phosphopeptides and 976 phosphoproteins, among these, 53 phosphosites were upregulated and 85 were downregulated in siZNF322A treated cells. Quantitative iTRAQ LC-MS/MS proteomics reveals the proteome profile in ZNF322A-silencing A549 cells, and 1108 proteins were identified. By bioinformatics approaches including functional enrichment, network and phosphorylation motif analyses, the results indicated that ZNF322A might regulate several biological processes, such as RNA processing and cell cycle. Phosphorylation of HSP27 Ser82 and IRS1 Ser1101 were significantly upregulated upon ZNF322A-silencing and participate in the regulation of unfolded protein response and glucose uptake. Our study provides a new insight for further investigation of protein phosphorylation status in ZNF322A-mediated lung cancer cells.

口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Abbreviation vi
Contents viii
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
1.1 Zinc finger proteins 1
1.1.1 Introduction 1
1.1.2 ZNF322A 2
1.2 Lung cancer 3
1.3 Phosphoproteomics 4
1.3.1 Introduction 4
1.3.2 Phosphoproteomics in cancer 5
1.4 Endoplasmic reticulum stress and unfolded protein response 6
1.4.1 Introduction 6
1.4.2 PERK–eIF2α–ATF4 signaling pathway 7
1.5 Motivation 8
Chapter 2 Materials and Methods 9
2.1 Cell culture 9
2.2 Cell transfection 9
2.3 RNA extraction and cDNA synthesis 9
2.3 Real-time quantitative RT-PCR (qRT-PCR) assays 10
2.4 Stage tip preparation 10
2.5 Sample preparation and extraction 11
2.6 Sample preparation for phosphoproteome profiling 12
2.6.1 Dimethyl labeling of peptides 12
2.6.2 Desalting with SDB-XC StageTips 13
2.6.3 Phosphopeptide enrichment with HAMMOC and fractionation 13
2.7 NanoLC–MS/MS analysis 14
2.8 Data analysis for phosphoproteomics 15
2.9 Comparison of proteome and phosphoproteome profiles 16
2.10 Functional enrichment analysis 16
2.11 Kinase activity map analysis and protein-protein interaction network construction 17
2.12 Western blot analysis 17
2.13 Glucose uptake assay 18
Chapter 3 Results 20
3.1 ZNF322A knockdown by small interfering RNA in A549 20
3.2 Quantitative phosphoproteomic analysis of ZNF322A-silencing lung cancer A549 cells 20
3.3 Integrative analysis of ZNF322A-regulatory proteome and phosphoproteome in lung cancer A549 cells 23
3.4 Biological processes and pathways regulated by ZNF322A 24
3.5 Kinase activity map and protein-protein interaction networks analyses 25
3.6 Heat shock protein 27 phosphorylation and unfolded protein response 26
3.7 IRS1–AKT pathway attenuation and reduction of glucose uptake 27
Chapter 4 Discussion 29
Chapter 5 Conclusions 37
References 38
Figures 51
Tables 75
Appendix 102

1.Miller J, Mclachlan AD, Klug A. 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. Embo j 4:1609-1614.
2.Schuh R, Aicher W, Gaul U, Cote S, Preiss A, Maier D, Seifert E, Nauber U, Schroder C, Kemler R, Et Al. 1986. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene. Cell 47:1025-1032.
3.Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP. 2007. Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci 32:63-70.
4.Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, Fitzhugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, Levine R, Mcewan P, Mckernan K, et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860-921.
5.Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat AM, Boyd DD. 2013. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell 50:16-28.
6.Chen L, Foreman DP, Sant''angelo DB, Krangel MS. 2016. Yin Yang 1 Promotes Thymocyte Survival by Downregulating p53. J Immunol 196:2572-2582.
7.Jheon AH, Ganss B, Cheifetz S, Sodek J. 2001. Characterization of a novel KRAB/C2H2 zinc finger transcription factor involved in bone development. J Biol Chem 276:18282-18289.
8.Li K, Gao B, Li J, Chen H, Li Y, Wei Y, Gong D, Gao J, Zhang J, Tan W, Wen T, Zhang L, Huang L, Xiang R, Lin P, Wei Y. 2015. ZNF32 protects against oxidative stress-induced apoptosis by modulating C1QBP transcription. Oncotarget 6:38107-38126.
9.Tian C, Xing G, Xie P, Lu K, Nie J, Wang J, Li L, Gao M, Zhang L, He F. 2009. KRAB-type zinc-finger protein Apak specifically regulates p53-dependent apoptosis. Nat Cell Biol 11:580-591.
10.Wagner S, Hess MA, Ormonde-Hanson P, Malandro J, Hu H, Chen M, Kehrer R, Frodsham M, Schumacher C, Beluch M, Honer C, Skolnick M, Ballinger D, Bowen BR. 2000. A broad role for the zinc finger protein ZNF202 in human lipid metabolism. J Biol Chem 275:15685-15690.
11.Wei Z, Yang Y, Zhang P, Andrianakos R, Hasegawa K, Lyu J, Chen X, Bai G, Liu C, Pera M, Lu W. 2009. Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming. Stem Cells 27:2969-2978.
12.Kan H, Huang Y, Li X, Liu D, Chen J, Shu M. 2016. Zinc finger protein ZBTB20 is an independent prognostic marker and promotes tumor growth of human hepatocellular carcinoma by repressing FoxO1. Oncotarget.
13.Lei L, Wu J, Gu D, Liu H, Wang S. 2016. CIZ1 interacts with YAP and activates its transcriptional activity in hepatocellular carcinoma cells. Tumour Biol.
14.Yang G, Ma F, Zhong M, Fang L, Peng Y, Xin X, Zhong J, Yuan F, Gu H, Zhu W, Zhang Y. 2014. ZNF703 acts as an oncogene that promotes progression in gastric cancer. Oncol Rep 31:1877-1882.
15.Zhang L, Xu Z, Xu X, Zhang B, Wu H, Wang M, Zhang X, Yang T, Cai J, Yan Y, Mao F, Zhu W, Shao Q, Qian H, Xu W. 2014. SALL4, a novel marker for human gastric carcinogenesis and metastasis. Oncogene 33:5491-5500.
16.Bao RF, Shu YJ, Hu YP, Wang XA, Zhang F, Liang HB, Ye YY, Li HF, Xiang SS, Weng H, Cao Y, Wu XS, Li ML, Wu WG, Zhang YJ, Jiang L, Dong Q, Liu YB. 2016. miR-101 targeting ZFX suppresses tumor proliferation and metastasis by regulating the MAPK/Erk and smad pathways in gallbladder carcinoma. Oncotarget.
17.Jiang J, Liu LY. 2015. Zinc finger protein X-linked is overexpressed in colorectal cancer and is associated with poor prognosis. Oncol Lett 10:810-814.
18.Lai KP, Chen J, He M, Ching AK, Lau C, Lai PB, To KF, Wong N. 2014. Overexpression of ZFX confers self-renewal and chemoresistance properties in hepatocellular carcinoma. Int J Cancer 135:1790-1799.
19.Yang F, Ma H, Feng L, Lian M, Wang R, Fan E, Fang J. 2015. Zinc finger protein x-linked (ZFX) contributes to patient prognosis, cell proliferation and apoptosis in human laryngeal squamous cell carcinoma. Int J Clin Exp Pathol 8:13886-13899.
20.Yu J, Liang QY, Wang J, Cheng Y, Wang S, Poon TC, Go MY, Tao Q, Chang Z, Sung JJ. 2013. Zinc-finger protein 331, a novel putative tumor suppressor, suppresses growth and invasiveness of gastric cancer. Oncogene 32:307-317.
21.Zhou S, Tang X, Tang F. 2015. Kruppel-like factor 17, a novel tumor suppressor: its low expression is involved in cancer metastasis. Tumour Biol.
22.Cheng Y, Liang P, Geng H, Wang Z, Li L, Cheng SH, Ying J, Su X, Ng KM, Ng MH, Mok TS, Chan AT, Tao Q. 2012. A novel 19q13 nucleolar zinc finger protein suppresses tumor cell growth through inhibiting ribosome biogenesis and inducing apoptosis but is frequently silenced in multiple carcinomas. Mol Cancer Res 10:925-936.
23.Li Y, Wang Y, Zhang C, Yuan W, Wang J, Zhu C, Chen L, Huang W, Zeng W, Wu X, Liu M. 2004. ZNF322, a novel human C2H2 Kruppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways. Biochem Biophys Res Commun 325:1383-1392.
24.Lo FY, Chang JW, Chang IS, Chen YJ, Hsu HS, Huang SF, Tsai FY, Jiang SS, Kanteti R, Nandi S, Salgia R, Wang YC. 2012. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization. BMC Cancer 12:235.
25.Jen J, Lin LL, Chen HT, Liao SY, Lo FY, Tang YA, Su WC, Salgia R, Hsu CL, Huang HC, Juan HF, Wang YC. 2015. Oncoprotein ZNF322A transcriptionally deregulates alpha-adducin, cyclin D1 and p53 to promote tumor growth and metastasis in lung cancer. Oncogene.
26.Siegel RL, Miller KD, Jemal A. 2015. Cancer statistics, 2015. CA Cancer J Clin 65:5-29.
27.Gadgeel SM, Ramalingam SS, Kalemkerian GP. 2012. Treatment of lung cancer. Radiol Clin North Am 50:961-974.
28.Sharma SV, Bell DW, Settleman J, Haber DA. 2007. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7:169-181.
29.Brambilla E, Gazdar A. 2009. Pathogenesis of lung cancer signalling pathways: roadmap for therapies. Eur Respir J 33:1485-1497.
30.Li MJ, He Q, Li M, Luo F, Guan YS. 2016. Role of gefitinib in the targeted treatment of non-small-cell lung cancer in Chinese patients. Onco Targets Ther 9:1291-1302.
31.Reimand J, Wagih O, Bader GD. 2013. The mutational landscape of phosphorylation signaling in cancer. Sci Rep 3:2651.
32.Krystal GW, Honsawek S, Litz J, Buchdunger E. 2000. The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clin Cancer Res 6:3319-3326.
33.Harsha HC, Pandey A. 2010. Phosphoproteomics in cancer. Mol Oncol 4:482-495.
34.Hetz C. 2012. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89-102.
35.Wang S, Kaufman RJ. 2012. The impact of the unfolded protein response on human disease. J Cell Biol 197:857-867.
36.Hetz C, Chevet E, Harding HP. 2013. Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12:703-719.
37.Schroder M, Kaufman RJ. 2005. ER stress and the unfolded protein response. Mutat Res 569:29-63.
38.Rappsilber J, Mann M, Ishihama Y. 2007. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896-1906.
39.Rappsilber J, Ishihama Y, Mann M. 2003. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663-670.
40.Masuda T, Tomita M, Ishihama Y. 2008. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7:731-740.
41.Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ. 2009. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484-494.
42.Hu CW, Hsu CL, Wang YC, Ishihama Y, Ku WC, Huang HC, Juan HF. 2015. Temporal Phosphoproteome Dynamics Induced by an ATP Synthase Inhibitor Citreoviridin. Mol Cell Proteomics 14:3284-3298.
43.Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y. 2007. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6:1103-1109.
44.Kyono Y, Sugiyama N, Imami K, Tomita M, Ishihama Y. 2008. Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. J Proteome Res 7:4585-4593.
45.Croft D, O''kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, Jupe S, Kalatskaya I, Mahajan S, May B, Ndegwa N, Schmidt E, Shamovsky V, Yung C, Birney E, Hermjakob H, et al. 2011. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39:D691-697.
46.Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, Von Mering C. 2015. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447-452.
47.Collins TJ. 2007. ImageJ for microscopy. Biotechniques 43:25-30.
48.Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M. 1992. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313:307-313.
49.Hao Y, Chun A, Cheung K, Rashidi B, Yang X. 2008. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283:5496-5509.
50.Tsytsarev V, Maslov KI, Yao J, Parameswar AR, Demchenko AV, Wang LV. 2012. In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog. J Neurosci Methods 203:136-140.
51.Shen YA, Li WH, Chen PH, He CL, Chang YH, Chuang CM. 2015. Intraperitoneal delivery of a novel liposome-encapsulated paclitaxel redirects metabolic reprogramming and effectively inhibits cancer stem cells in Taxol((R))-resistant ovarian cancer. Am J Transl Res 7:841-855.
52.Marini C, Ravera S, Buschiazzo A, Bianchi G, Orengo AM, Bruno S, Bottoni G, Emionite L, Pastorino F, Monteverde E, Garaboldi L, Martella R, Salani B, Maggi D, Ponzoni M, Fais F, Raffaghello L, Sambuceti G. 2016. Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt. Sci Rep 6:25092.
53.Ishiyama N, Lee SH, Liu S, Li GY, Smith MJ, Reichardt LF, Ikura M. 2010. Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell 141:117-128.
54.Strumane K, Bonnomet A, Stove C, Vandenbroucke R, Nawrocki-Raby B, Bruyneel E, Mareel M, Birembaut P, Berx G, Van Roy F. 2006. E-cadherin regulates human Nanos1, which interacts with p120ctn and induces tumor cell migration and invasion. Cancer Res 66:10007-10015.
55.Thoreson MA, Reynolds AB. 2002. Altered expression of the catenin p120 in human cancer: implications for tumor progression. Differentiation 70:583-589.
56.Kelkar N, Standen CL, Davis RJ. 2005. Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol Cell Biol 25:2733-2743.
57.Yu FX, Zhao B, Guan KL. 2015. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 163:811-828.
58.Kostenko S, Johannessen M, Moens U. 2009. PKA-induced F-actin rearrangement requires phosphorylation of Hsp27 by the MAPKAP kinase MK5. Cell Signal 21:712-718.
59.Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M. 1999. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947-18956.
60.Landry J, Lambert H, Zhou M, Lavoie JN, Hickey E, Weber LA, Anderson CW. 1992. Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem 267:794-803.
61.Katsogiannou M, Andrieu C, Rocchi P. 2014. Heat shock protein 27 phosphorylation state is associated with cancer progression. Front Genet 5:346.
62.Yasuda E, Kumada T, Takai S, Ishisaki A, Noda T, Matsushima-Nishiwaki R, Yoshimi N, Kato K, Toyoda H, Kaneoka Y, Yamaguchi A, Kozawa O. 2005. Attenuated phosphorylation of heat shock protein 27 correlates with tumor progression in patients with hepatocellular carcinoma. Biochem Biophys Res Commun 337:337-342.
63.Matsushima-Nishiwaki R, Takai S, Adachi S, Minamitani C, Yasuda E, Noda T, Kato K, Toyoda H, Kaneoka Y, Yamaguchi A, Kumada T, Kozawa O. 2008. Phosphorylated heat shock protein 27 represses growth of hepatocellular carcinoma via inhibition of extracellular signal-regulated kinase. J Biol Chem 283:18852-18860.
64.Nakashima M, Adachi S, Yasuda I, Yamauchi T, Kawaguchi J, Itani M, Yoshioka T, Matsushima-Nishiwaki R, Hirose Y, Kozawa O, Moriwaki H. 2011. Phosphorylation status of heat shock protein 27 plays a key role in gemcitabine-induced apoptosis of pancreatic cancer cells. Cancer Lett 313:218-225.
65.Okuno M, Yasuda I, Adachi S, Nakashima M, Kawaguchi J, Doi S, Iwashita T, Hirose Y, Kozawa O, Yoshimi N, Shimizu M, Moriwaki H. 2016. The significance of phosphorylated heat shock protein 27 on the prognosis of pancreatic cancer. Oncotarget.
66.Stope MB, Weiss M, Preuss M, Streitborger A, Ritter CA, Zimmermann U, Walther R, Burchardt M. 2014. Immediate and transient phosphorylation of the heat shock protein 27 initiates chemoresistance in prostate cancer cells. Oncol Rep 32:2380-2386.
67.Mardilovich K, Pankratz SL, Shaw LM. 2009. Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal 7:14.
68.Gual P, Le Marchand-Brustel Y, Tanti JF. 2005. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99-109.
69.Sourbier C, Scroggins BT, Ratnayake R, Prince TL, Lee S, Lee MJ, Nagy PL, Lee YH, Trepel JB, Beutler JA, Linehan WM, Neckers L. 2013. Englerin A stimulates PKCtheta to inhibit insulin signaling and to simultaneously activate HSF1: pharmacologically induced synthetic lethality. Cancer Cell 23:228-237.
70.Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029-1033.
71.Tremblay F, Brule S, Hee Um S, Li Y, Masuda K, Roden M, Sun XJ, Krebs M, Polakiewicz RD, Thomas G, Marette A. 2007. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A 104:14056-14061.
72.Song JH, Padi SK, Luevano LA, Minden MD, Deangelo DJ, Hardiman G, Ball LE, Warfel NA, Kraft AS. 2016. Insulin receptor substrate 1 is a substrate of the Pim protein kinases. Oncotarget.
73.Li Y, Soos TJ, Li X, Wu J, Degennaro M, Sun X, Littman DR, Birnbaum MJ, Polakiewicz RD. 2004. Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). J Biol Chem 279:45304-45307.
74.Wick KR, Werner ED, Langlais P, Ramos FJ, Dong LQ, Shoelson SE, Liu F. 2003. Grb10 inhibits insulin-stimulated insulin receptor substrate (IRS)-phosphatidylinositol 3-kinase/Akt signaling pathway by disrupting the association of IRS-1/IRS-2 with the insulin receptor. J Biol Chem 278:8460-8467.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top