跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 19:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李堯慧
研究生(外文):Yao-Hui Li
論文名稱:結合治療用超音波與CXCL10質體轉染於癌腫瘤之治療
論文名稱(外文):Combination of Therapeutic Ultrasound and CXCL10 Plasmid Transfect for Cancer Tumor Treatment
指導教授:林文澧林文澧引用關係繆希椿
指導教授(外文):Win-Li LinShi-Chuen Miaw
口試委員:謝銘鈞張富雄
口試委員(外文):Ming-Jium ShiehFu-Hsiung Chang
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:43
中文關鍵詞:免疫療法CXCL10超音波熱治療
外文關鍵詞:ImmunotherapyCXCL10UltrasoundHyperthermia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:手術、化學治療和放射治療,是目前癌腫瘤的主要療法。而腫瘤的復發的情況,一直是目前癌症治療的主要議題。希望藉由全身性癌症治療的免疫療法,能夠降低腫瘤復發的機率。
研究目標:利用超音波的聲孔作用及熱效應,破壞腫瘤微環境並將CXCL10質體轉染進入腫瘤細胞。腫瘤釋放CXCL10趨化因子後,進而吸引並活化自然殺手細胞去毒殺腫瘤細胞,提高治療效果。
材料與方法:在in-vitro實驗中,先測試自然殺手細胞對不同濃度CXCL10的趨化能力是否有所差異。使用不同比例的自然殺手細胞與腫瘤細胞量,評估自然殺手細胞對腫瘤細胞的細胞毒殺性。在in-vitro和in-vivo中,測試給予CXCL10質體後施打超音波,是否能提高的CXCL10的濃度。將實驗分為四組,分別為:控制組(Control)、CXCL10質體組(Plasmid)、超音波熱治療組(Ultrasound hyperthermia, pUH)、質體加超音波組(Plasmid +pUH)。在in-vivo實驗中,當腫瘤大小為50 mm3,開始第一次治療,一週治療兩次,總共治療兩週。每隔兩天記錄腫瘤體積及小鼠體重。此外,會利用非侵入性活體分子影像觀察腫瘤的冷光表現的強度。
實驗結果:研究結果顯示,自然殺手細胞會隨著CXCL10的濃度上升,其趨化性愈強,被吸引的自然殺手細胞數目也愈多。當自然殺手細胞數目愈多,其對腫瘤細胞的毒殺效果也愈顯著。在in-vitro和in-vivo中,給予CXCL10質體後施打超音波(Plasmid +pUH),其CXCL10的濃度和其他三組都具有顯著性差異。趨化測試和免疫組織切片染色也發現,Plasmid +pUH組自然殺手細胞浸潤程度有顯著差異。觀察腫瘤大小變化發現,Plasmid +pUH組和Control組在第17天開始出現顯著性差異,而在第23天和Plasmid組出現顯著性差異,和pUH組並無明顯差異。利用IVIS系統觀察第13天及第20天的冷光表現值和腫瘤大小相類似。
結論:利用超音波熱治療可傷害腫瘤,破壞腫瘤的微環境,增強CXCL10質體轉染進入腫瘤細胞,進而可提高腫瘤細胞釋放的CXCL10濃度,吸引自然殺手細胞,提高自然殺手細胞的浸潤程度,以達到較好的腫瘤治療效果。

Background: Surgery, chemotherapy and radiotherapy are the major modalities for cancer tumor treatment, but the development of tumor recurrence is still the major issue for cancer treatment. Immunotherapy is a systemic cancer treatment and it may be useful for reducing relapse of the treated tumors.
Purpose: To use ultrasound sonication/hyperthermia to disrupt the microenvironment of tumor and to transfect CXCL10 plasmid into cancer cells, and then the release of CXCL10 from cancer cells to attract and activate natural killer(NK) cells to kill the remaining cancer cells and enhance the immune system to improve the treatment efficacy.
Materials and Methods: In in-vitro study, different concentration of CXCL10 was used to evaluate the chemotaxis of NK cells and different ratio of NK cells to cancer cells was used to assess the cytotoxicity of NK cells. The transfect of CXCL10 plasmid into cancer cells by ultrasound sonication was investigated both in-vitro and in-vivo studies. The studies included four groups: control, plasmid only, ultrasound hyperthermia (pUH), and plasmid +pUH. For the in-vivo study, the first treatment was conducted when the tumor grew up to 50 mm3, and treatment was conducted twice a week for two weeks. Body weight and tumor volume were measured every two days. The tumors were also observed by In-vivo Image System (IVIS) during the treatment.
Results: The results showed that the chemotaxis of NK cells increased with the concentration of CXCL10, and the cytotoxicity of NK cells to cancer cells also increased with the NK/cancer cell ratio. Both in-vitro and in-vivo results displayed that the concentration of CXCL10 increased after plasmid injection plus ultrasound hyperthermia (plasmid +pUH) and there was a significant difference compared with the other groups. The chemotaxis assay and immunohistochemical staining indicated that the increased tumor infiltration of NK cells in the plasmid +pUH group and it had a significant difference. For the change of tumor volumes, the plasmid +pUH group was significantly smaller than the control group since day 17 and significantly smaller than the plasmid group since day 23. However, there was no significant difference between the pUH group and the plasmid +pUH group. Similar results were observed in the expression of bioluminescence (IVIS image).
Conclusion: Ultrasound hyperthermia might damage tumor to disrupt its microenvironment and enhance the CXCL10 plasmid transfection to cancer cells to release CXCL10 to attract NK cells for a better cancer tumor treatment.

誌謝………………………………………………………………………………………i
中文摘要………………………………………………………………………...………ii
Abstract……………………………………………………………………………….…iv
目錄…………………………………………………………………………………..…vi
圖目錄…………………………………………………………………………………ix
表目錄……………………………………………………………………………...…xi
第一章 緒論………………………………………………………………………….…1
1.1 腫瘤……………………………………………………………………………1
1.2 CXCL10……………………………………………………………………...…1
1.3 自然殺手細胞…………………………………………………………………2
1.4 超音波…………………………………………………………………………3
1.4.1 超音波聲孔作用………………………………………………….……3
1.4.2 超音波熱治療………………………………………………………….4
1.5 研究目的………………………………………………………………………5
第二章 材料與方法…………………………………………………………………….6
2.1 腫瘤細胞株……………………………………………………………………6
2.2 實驗動物………………………………………………………………………6
2.3 CXCL10質體……………………………………………………...……...……7
2.4 自然殺手細胞…………………………………………………………………8
2.5 超音波系統……………………………………………………………………8
2.6 腫瘤細胞株冷光測試實驗……………………………………………………9
2.6.1 腫瘤細胞螢光素濃度的滴定…………………………………...……10
2.6.2 腫瘤細胞螢光素酶表現的定量…………………………………...…10
2.7 自然殺手細胞對不同濃度CXCL10趨化實驗……………………………...11
2.8 自然殺手細胞對腫瘤細胞毒殺性實驗……………………………………..12
2.9 In-vitro CXCL10濃度定量實驗……………………………………………...13
2.10 In-vitro自然殺手細胞的趨化實驗………………………………………….13
2.11 超音波熱治療溫度量測……………………………………………………14
2.12 IVIS活體分子影像系統…………………………………………………….16
2.13 動物實驗設計及流程………………………………………………………16
2.14 腫瘤組織中CXCL10濃度定量實驗…………………………………….…17
2.15 腫瘤組織中自然殺手細胞的浸潤…………………………………………18
2.16 數值統計及分析……………………………………………………………18
第三章 實驗結果……………………………………………………………………...19
3.1 腫瘤細胞株冷光強度實驗…………………………………………………..19
3.1.1 腫瘤細胞螢光素濃度的滴定………………………………………...19
3.1.2 腫瘤細胞螢光素酶表現的定量……………………………………...20
3.2 自然殺手細胞對不同濃度CXCL10趨化實驗……………………………...20
3.3自然殺手細胞對腫瘤細胞毒殺性實驗………………………………………22
3.4 In-vitro CXCL10濃度定量實驗……………………………………………...23
3.5 In-vitro自然殺手細胞的趨化實驗…………………………………………...23
3.6 超音波熱治療溫度測試……………………………………………………..24
3.7 In-vivo腫瘤治療結果………………………………………………………...25
3.8 IVIS活體分子影像結果……………………………………………………...27
3.9 各實驗組小鼠體重變化……………………………………………………..30
3.10 腫瘤組織中CXCL10濃度定量實驗……………………………………….31
3.11 腫瘤組織中自然殺手細胞浸潤程度的染色結果…………………………32
3.12 腫瘤組織切片染色結果……………………………………………………34
第四章 討論…………………………………………………………………………...36
第五章 結論與未來展望……………………………………………………………...38
第六章 參考文獻……………………………………………………………………...39

1.Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144(5):646-674.
2.Moser B, Loetscher P: Lymphocyte traffic control by chemokines. Nat Immunol 2001, 2(2):123-128.
3.Zlotnik A, Yoshie O: Chemokines: a new classification system and their role in immunity. Immunity 2000, 12(2):121-127.
4.Jinquan T, Jing C, Jacobi HH, Reimert CM, Millner A, Quan S, Hansen JB, Dissing S, Malling HJ, Skov PS and Poulsen, LK: CXCR3 Expression and Activation of Eosinophils: Role of IFN- -Inducible Protein-10 and Monokine Induced by IFN-γ J Immunology 2000, 165(3):1548-1556.
5.Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, Koch AE, Moser B, Mackay CR: The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 1998, 101(4):746-754.
6.Lee EY, Lee ZH, Song YW: CXCL10 and autoimmune diseases. Autoimmun Rev 2009, 8(5):379-383.
7.Dyer KD, Percopo CM, Fischer ER, Gabryszewski SJ, Rosenberg HF: Pneumoviruses infect eosinophils and elicit MyD88-dependent release of chemoattractant cytokines and interleukin-6. Blood 2009, 114(13):2649-2656.
8.Luster AD, Unkeless JC, Ravetch JV: Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 1985, 315(6021):672-676.
9.Luster AD, Ravetch JV: Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J Exp Med 1987, 166(4):1084-1097.
10.Neville LF, Mathiak G, Bagasra O: The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): a novel, pleiotropic member of the C-X-C chemokine superfamily. Cytokine Growth Factor Rev 1997, 8(3):207-219.
11.Ondrick K, Samojla BG: Angiogenesis. Clin Podiatr Med Surg 1992, 9(1):185-202.
12.Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber JM, Maheshwari S, Kleinman HK, Reaman GH, Tosato G: Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 1995, 182(1):155-162.
13.Arenberg DA KS, Polverini PJ, Morris SB, Burdick MD, Glass MC, Taub DT, Iannettoni MD, Whyte RI, Strieter RM.: Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 1996, 184(3):981-992.
14.Pertl U, Luster AD, Varki NM, Homann D, Gaedicke G, Reisfeld RA, Lode HN: IFN- -Inducible Protein-10 Is Essential for the Generation of a Protective Tumor-Specific CD8 T Cell Response Induced by Single-Chain IL-12 Gene Therapy. J Immunology 2001, 166(11):6944-6951.
15.Feldman AL, Friedl J, Lans TE, Libutti SK, Lorang D, Miller MS, Turner EM, Hewitt SM, Alexander HR: Retroviral gene transfer of interferon-inducible protein 10 inhibits growth of human melanoma xenografts. Int J Cancer 2002, 99(1):149-153.
16.Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, Marra, F., Romagnani, S., Serio, M. and Romagnani, P.: An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 2003, 197(11):1537-1549.
17.Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM: CXC chemokines in angiogenesis. J Leukoc Biol 2000, 68(1):1-8.
18.Cerwenka A, Lanier LL: Natural killer cells, viruses and cancer. Nat Rev Immunol 2001, 1(1):41-49.
19.Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S: Innate or adaptive immunity? The example of natural killer cells. Science 2011, 331(6013):44-49.
20.Glas R, Franksson L, Une C, Eloranta ML, Ohlen C, Orn A, Karre K: Recruitment and activation of natural killer (NK) cells in vivo determined by the target cell phenotype. An adaptive component of NK cell-mediated responses. J Exp Med 2000, 191(1):129-138.
21.Leibson PJ: Signal transduction during natural killer cell activation: inside the mind of a killer. Immunity 1997, 6(6):655-661.
22.Moretta L BC, Pende D, Mingari MC, Biassoni R, Moretta A.: Human natural killer cells: their origin, receptors and function. Eur J Immunol 2002, 32(5):1205-1211.
23.Karre K: Natural killer cell recognition of missing self. Nat Immunol 2008, 9(5):477-480.
24.Cheng M, Chen Y, Xiao W, Sun R, Tian Z: NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 2013, 10(3):230-252.
25.Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K: Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 2000, 356(9244):1795-1799.
26.Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L: Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 2012, 12(4):239-252.
27.Li SD, Huang L: Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther 2006, 13(18):1313-1319.
28.Marmor JB, Hilerio FJ, Hahn GM: Tumor eradication and cell survival after localized hyperthermia induced by ultrasound. Cancer Res 1979, 39(6 Pt 1):2166-2171.
29.Miller DL, Pislaru SV, Greenleaf JE: Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet 2002, 27(1-6):115-134.
30.Brayman AA, Coppage ML, Vaidya S, Miller MW: Transient poration and cell surface receptor removal from human lymphocytes in vitro by 1 MHz ultrasound. Ultrasound Med Biol 1999, 25(6):999-1008.
31.Sundaram J, Mellein BR, Mitragotri S: An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J 2003, 84(5):3087-3101.
32.Zarnitsyn VG, Prausnitz MR: Physical parameters influencing optimization of ultrasound-mediated DNA transfection. Ultrasound Med Biol 2004, 30(4):527-538.
33.Rahim A, Taylor SL, Bush NL, ter Haar GR, Bamber JC, Porter CD: Physical parameters affecting ultrasound/microbubble-mediated gene delivery efficiency in vitro. Ultrasound Med Biol 2006, 32(8):1269-1279.
34.Arthur RM, Straube WL, Trobaugh JW, Moros EG: Non-invasive estimation of hyperthermia temperatures with ultrasound. Int J Hyperthermia 2005, 21(6):589-600.
35.Toraya-Brown S, Fiering S: Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperthermia 2014, 30(8):531-539.
36.den Brok MH, Sutmuller RP, van der Voort R, Bennink EJ, Figdor CG, Ruers TJ, Adema GJ: In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res 2004, 64(11):4024-4029.
37.van der Zee J: Heating the patient: a promising approach? Annals Oncology 2002, 13(8):1173-1184.
38.Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM: Hyperthermia in combined treatment of cancer. Lancet Oncology 2002, 3(8):487-497.
39.Fiorentini G, Szasz A: Hyperthermia today: electric energy, a new opportunity in cancer treatment. J Cancer Res Ther 2006, 2(2):41-46.
40.Skitzki JJ, Repasky EA, Evans SS: Hyperthermia as an immunotherapy strategy for cancer. Current Opinion Inv Drugs (London, England : 2000) 2009, 10(6):550-558.
41.Tomayko MM, Reynolds CP: Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 1989, 24(3):148-154.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊