跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡元鈞
研究生(外文):Yuan-Chun Tsai
論文名稱:將化療藥物包覆於CD133專一附著之胜肽鏈修飾之蛋白質載體用於標靶治療
論文名稱(外文):Encapsulation of CPT-11 into CD133 specific-binding peptide Modified Apoferritin for Targeted Delivery to Colorectal Cancer Stem Cell
指導教授:謝銘鈞謝銘鈞引用關係
指導教授(外文):Ming-Jium Shieh
口試委員:林文澧張富雄駱俊良胡尚秀
口試委員(外文):Wen-Li LinFu-Hsiung ChangChun-Liang LoShang-Hsiu Hu
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:39
中文關鍵詞:脫鐵蛋白人類大腸直腸癌CD133表面抗原針對治療抗癌妥
外文關鍵詞:ApoferritinHuman colorectal cancerCD133 surface antibodytargeting treatmentCPT-11
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臨床上對於大腸直腸癌的治療,除了手術之外,搭配化療藥物,是最常見的方式。然而,復發的情形,時有所聞,這被認為與癌症類幹細胞有關。在這些化療藥物中,抗癌妥(Irinotecan)是其中的用藥之一,是一種作用於DNA topoisomerase I[1, 2]之專一性抑制劑的抗腫瘤藥物。在大多數的身體組織內,它會經carboxylesterase代謝成SN-38。SN-38作用於純化之DNA topoisomerase I比Irinotecan更具活性。然而,SN-38的毒性相當強,容易任意毒殺正常的細胞,且SN-38並非水溶性的藥物,不適用直接用在人體身上。因此,在這篇論文中,選擇具水溶性的CPT-11作為化療藥物。除了具有毒殺腫瘤細胞的功能外,如果我們以針對癌症類幹細胞作為目標,則可以有效的遏止復發的可能性,進而達到治癒的效果。
為了達到針對腫瘤幹細胞治療,我選擇以CD133抗原作為目標。在許多研究中指出,癌症幹細胞的CD133表現量特別的明顯。為了模擬癌症幹細胞的表面抗原表現,我選用大腸直腸癌HCT-116細胞株(CD133 over-expression)作為模型。
蛋白質載體是一種新型的材料,在我的研究中,選擇脫鐵蛋白(apoferritin)它是由24個亞基組成的球狀蛋白。脫鐵蛋白會在中性環境下自我形成中空奈米載體,具外徑12nm以及內徑8nm的奈米性質,使得其擁有更好的循環半衰期。在酸性(pH值 = 2)的環境下脫鐵蛋白會崩解,形成24個亞基,這個過程是可逆的反應,將pH值調回7.4時,脫鐵蛋白回到原本的球體型態。藉著這樣的方式,可將藥物包在其中。除此之外,我在蛋白質上,用麩胺酸以及天門冬胺酸接上CD133的專一附著之胜肽鏈,做為針對具CD133表面抗原的細胞株,以達到針對治療的效果。



It is common that we combine chemotherapy with surgery for colorectal cancer clinically. However, we can find out several recurrence cases in some time, and it is thought to be related with cancer-stem like cells. In these drugs we use on chemotherapy, irinotecan is one of the used-drug for colorectal cancer. It is the drug that plays on DNA topoisomerase I specific prohibited anti-cancer drug. In most our organs, irinotecan metabolizes to SN-38 through carboxylesterase. SN-38 is more powerful on inhibiting DNA topoisomerase I than irinotecan. It is because of its toxicity on normal cells and of its hydrophobic characteristic that we can’t use SN-38 in human body without other assisted materials. In this study, I choose hydrophilic drug, irinotecan, as chemotherapeutic drug. If I can target on cancer stem-like cells and kill them, I can minimize the recurrence rate and make the treatment more efficiency.
In order to achieve the aim of targeting cancer stem-like cells and having some treatment on them, I choose CD133 marker as the target site. It is pointed out that CD133 marker presents obviously on cancer stem-like cells in many researches. For imitating the surface antibody on cancer stem-like cells, I choose colorectal cancer cells, HCT-116 (CD133 over-expression), as my model.
Protein cage is a novel material. I choose apoferritin in my study. It is a sphere shape parotein composed of 24 subunits. Apoferritin can form a hollow nanoparticle in neutral environment, which is 12 nm in the exterior and 8 nm in the interior of protein. It is because of the nano-character that apoferritin has better circulation period in body. Apoferritin will discompose to 24 subunits in pH 2, and it will re-compose to sphere shape after turning pH back to neutral environment. Through this process, I can encapsulate drug into apoferritin. Besides, I graft CD133 specific-binding peptide to glutamic acid and asparatic acid on the surface of apoferritin so that it can target on CD133 over-expression cell line and get the effect of targeting treatment.


CONTENTS
口試委員審定書............................................................................................................ i
致謝............................................................................................................................... ii
中文摘要.......................................................................................................................iii
ABSTRACT................................................................................................................. iv
CONTENTS................................................................................................................. vi
LIST OF SCHEMES....................................................................................................ix
LIST OF TABLES........................................................................................................ix
LIST OF FIGURES......................................................................................................ix
Chapter 1 Introduction...................................................................................................1
1.1Clinical treatment for colorectal cancer.....................................................................1
1.2 Apoferritin and its characteristic..............................................................................1
1.3 Cancer stem cell.......................................................................................................2
1.4 CD133 marker..........................................................................................................2
1.5 CPT-11(irinotecan)...................................................................................................3
1.6 Aim...........................................................................................................................3
Chapter 2 Materials and Methods..................................................................................4
2.0 Experiment procedure..............................................................................................4
2.1 Materials...................................................................................................................4
2.2 Conjugate FITC-CD133 peptide onto apoferritin....................................................4
2.3 Encapsulation of CPT-11 into APO-CD133.............................................................5
2.4 Characterization of APO and APO(CPT-11)-CD133...............................................6
2.5 Stability of APO(CPT-11)-CD133...........................................................................6
2.6 Drug releasing profile of APO(CPT-11)-CD133......................................................6
2.7 Cell culture...............................................................................................................7
2.8 Expression of CD133 marker in different cell lines.................................................7
2.9 Binding affinity of APO(CPT-11)-CD133 onto cells...............................................8
2.10 Cellular uptake.......................................................................................................8
2.11 In vitro cytotoxicity................................................................................................9
2.12 Colony formation...................................................................................................9
2.13 Pharmacokinetics.................................................................................................10
2.14 In vivo, growth inhibition studies of tumors........................................................10
2.15 Biodistribution......................................................................................................11
2.16 H&E staining........................................................................................................11
Chapter 3 Results.........................................................................................................12
3.0 Icons of each carrier types and their symbols……………………………………12
3.1 Conjugate FITC-CD133_peptide onto apoferritin.................................................12
3.2 Encapsulation of CPT-11 into APO-CD133...........................................................12
3.3 Characterization of APO and APO(CPT-11)-CD133.............................................13
3.4 Stability of APO(CPT-11)-CD133..........................................................................13
3.5 Drug releasing profile of APO(CPT-11)-CD133....................................................14
3.6 Expression of CD133 marker in different cell lines...............................................14
3.7 Binding affinity of APO(CPT-11)-CD133 onto cells.............................................14
3.8 Cellular uptake.......................................................................................................15
3.9 In vitro cytotoxicity................................................................................................15
3.10 Colony formation.................................................................................................16
3.11 Pharmacokinetics..................................................................................................16
3.12 In vivo, growth inhibition studies of tumors........................................................16
3.13 Biodistribution......................................................................................................17
3.14 H&E staining........................................................................................................18
Chapter 4 Conclusions and Discussions.......................................................................19
4.1 Conclusions............................................................................................................19
4.2Discussions..............................................................................................................19
REFERENCE...............................................................................................................21
























LIST OF SCHEMES
Scheme 1. Icons of each carrier types and their symbols……………………………23
Scheme2. The procedure of composing and forming APO(CPT-11)-CD133 ............24
LIST OF TABLES
Table 1. CD133 specific-binding peptide conjugated apoferritin................................25
Table 2. The rate of CPT-11 encapsulated in apoferritin..............................................25
Table 3. Size and zeta potential of apoferritin and APO(CPT-11)-CD133 measured by
DLS................................................................................................................26
Table 4. Drug released from APO(CPT-11)-CD133 by the time passed......................26
LIST OF FIGURES
Figure 1. Images measured by transmission electron micrograph (a)Apoferritin
(b)APO(CPT-11)-CD133 and the size distribution images measured by
(c)Apoferritin (d) APO(CPT-11)-CD133.......................................................27
Figure 2. Stability of APO(CPT-11)-CD133 (a) PDI of APO(CPT-11)-CD133 (b)size
of APO(CPT-11)-CD133................................................................................28
Figure 3. Drug releasing profile of APO(CPT-11)-CD133 at different conditions......29
Figure 4. CD133 performance of different cell lines analyzed by flow cytometer
(a)HT-29 (b)SW620 (c)HCT-116(d)HCT-116 (K.O. CD133)........................30
Figure 5. Expression of CD133 on different cell lines by western blot.......................30
Figure 6. Binding affinity of APO(CPT-11)-CD133 on different cell lines analyzed by
flow cytometer (a)HT-29 (b)SW620 (c)HCT-116 (d)HCT-116(K.O.
CD133). .........................................................................................................31
Figure 7. Cellular uptake of different drug types to different cell lines measured by
detecting the florescence of CPT-11(a)combination (b)HCT-116 (c)HT-29
(d)SW620(e)HCT-116(K.O. CD133).............................................................32
Figure 8. IC50 of different drug types on different cell lines analyzed by MTT assay
(a)SW620 (b)HT-29 (c)HCT-116 (d)HCT-116(K.O. CD133) (e)sorted out to be a chart...............................................................................................................33
Figure 9. Colony formation after treated with (a)control (b)CPT-11, (c)APO(CPT-11)
and (d)APO(CPT-11)-CD133. (e)after normalizing control to 1000 and
compare to other groups...................................................................................34
Figure 10. Pharmacokinetics measured by collection blood from nude mice after
intravenous injection of CPT-11 or APO(CPT-11)-CD133 into different
mice................................................................................................................35
Figure11. In vivo tumor growth inhibition after tumors growth up to 100mm3 and
intravenous treatment of no treatment(control), APO-CD133, CPT-11,
APO(CPT-11), APO(CPT-11)-CD133 in different groups (a)tumor size
(b)weight changes............................................................................................36
Figure 12.biodistribution after intravenous injection of APO(CPT-11)-CD133 or
CPT-11 into nude mice, and sacrifice them at 24 and 48 hour respectively...37
Figure 13. H&E staining after sacrificing one mouse for each group. (a)Heart (b)
Liver (c)Spleen (d)Lung (e)Kidney. The order of each subfigure follows : Control, APO-CD133, CPT-11, APO(CPT-11), APO(CPT-11)-CD133 from left to right and top to bottom…….………………………………………………38







REFERENCE
1.Arakawa, Y., DNA topoisomerase I--targeting drugs. Nihon Rinsho, 2015. 73 Suppl 2: p. 174-7.
2.Nygard, S.B., et al., DNA Topoisomerase I Gene Copy Number and mRNA Expression Assessed as Predictive Biomarkers for Adjuvant Irinotecan in Stage II/III Colon Cancer. Clin Cancer Res, 2016. 22(7): p. 1621-31.
3.Goto, K., et al., Combined chemotherapy with cisplatin, etoposide, and irinotecan versus topotecan alone as second-line treatment for patients with sensitive relapsed small-cell lung cancer (JCOG0605): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol, 2016.
4.Woodward, W.A. and R.P. Hill, Cancer Stem Cells. Recent Results Cancer Res, 2016. 198: p. 25-44.
5.Wei, M.F., et al., Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy, 2014. 10(7): p. 1179-92.
6.Gumulec, J., et al., Modulation of induced cytotoxicity of doxorubicin by using apoferritin and liposomal cages. Int J Mol Sci, 2014. 15(12): p. 22960-77.
7.Blazkova, I., et al., Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery. Int J Mol Sci, 2013. 14(7): p. 13391-402.
8.Xing, R., et al., Characterization and cellular uptake of platinum anticancer drugs encapsulated in apoferritin. J Inorg Biochem, 2009. 103(7): p. 1039-44.
9.Alamodi, A.A., et al., Cancer stem cell as therapeutic target for melanoma treatment. Histol Histopathol, 2016: p. 11791.
10.Schmohl, J.U. and D.A. Vallera, CD133, Selectively Targeting the Root of Cancer. Toxins (Basel), 2016. 8(6).
11.Zacchigna, S., et al., Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J Neurosci, 2009. 29(7): p. 2297-308.
12.Liu, C.Y., et al., UGT1A1*28 polymorphism predicts irinotecan-induced severe toxicities without affecting treatment outcome and survival in patients with metastatic colorectal carcinoma. Cancer, 2008. 112(9): p. 1932-40.
13.Yang, P.S., et al., 1,6-Bis[4-(4-amino-3-hydroxyphenoxy)phenyl] diamantane potentiates in vitro and in vivo antitumor effects of irinotecan on human colorectal cancer cells. Oncol Lett, 2016. 11(5): p. 3551-3557.
14.Sun, J., et al., A novel mouse CD133 binding-peptide screened by phage display inhibits cancer cell motility in vitro. Clin Exp Metastasis, 2012. 29(3): p. 185-96.
15.Zhen, Z., et al., RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano, 2013. 7(6): p. 4830-7.
16.Bezouska, K., et al., Dimerization of an immunoactivating peptide derived from mycobacterial hsp65 using N-hydroxysuccinimide based bifunctional reagents is critical for its antitumor properties. Bioconjug Chem, 2012. 23(10): p. 2032-41.
17.Zhou, J.Y., et al., Role of CD44high/CD133high HCT-116 cells in the tumorigenesis of colon cancer. Oncotarget, 2016. 7(7): p. 7657-66.
18.Coughlin, J., et al., A simple enzyme-substrate localized conjugation method to generate immobilized, functional glutathione S-transferase fusion protein columns for affinity enrichment. Anal Biochem, 2016. 505: p. 51-8.
19.Heger, Z., et al., Apoferritin applications in nanomedicine. Nanomedicine (Lond), 2014. 9(14): p. 2233-45.
20.Makino, A., et al., Effective encapsulation of a new cationic gadolinium chelate into apoferritin and its evaluation as an MRI contrast agent. Nanomedicine, 2011. 7(5): p. 638-46.
21.Krieg, R.C., et al., Protein quantification and its tolerance for different interfering reagents using the BCA-method with regard to 2D SDS PAGE. J Biochem Biophys Methods, 2005. 65(1): p. 13-9.
22.Levi, F., et al., Pharmacokinetics of Irinotecan, Oxaliplatin and 5-Fluorouracil During Hepatic Artery Chronomodulated Infusion: A Translational European OPTILIV Study. Clin Pharmacokinet, 2016.
23.Li, L., L. Zhang, and M. Knez, Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin. Pharmacol Res, 2016. 110: p. 1-9.
24.Song, X., et al., Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2015. 32(6): p. 1267-72.
25.Truffi, M., et al., Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol Res, 2016. 107: p. 57-65.
26.Hong, I., et al., Expression of the Cancer Stem Cell Markers CD44 and CD133 in Colorectal Cancer: An Immunohistochemical Staining Analysis. Ann Coloproctol, 2015. 31(3): p. 84-91.
27.Khorshidi, A., P. Dhaliwal, and B.B. Yang, Noncoding RNAs in Tumor Angiogenesis. Adv Exp Med Biol, 2016. 927: p. 217-41.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 開發以抗體作為載體搭載鉑類藥物並針對大腸直腸癌之標靶藥物
2. 生物可分解性多功能微粒體於肝癌栓塞治療之研究
3. 奈米碳管結合低電壓電穿孔之藥物釋放平台於癌症治療應用
4. 新型標靶性奈米蛋白質載體搭載鉑類化療藥物應用於人類大腸直腸癌之應用
5. 評估氮氧化鈦、黃素單核苷酸和過氧化氫對於牙齒美白之效果
6. 大腸直腸癌幹細胞特性與治療策略之探討
7. 利用第一型膠原蛋白凝膠與其培養出的三維嵌入球型人類結腸直腸癌細胞作為三維體外仿生模型之建立與評估
8. 利用正電明膠奈米粒子做為具免疫刺激性抗原載體應用於黏膜抗原傳遞之研究
9. 玻尿酸接枝鉑類藥物結合奈米碳管之製備藉由電穿孔經皮傳輸應用於黑色素細胞瘤之治療
10. D133標靶型抗體修飾於高分子微胞載體於大腸癌症幹細胞治療之應用
11. 磁性奈米微胞載體結合化療藥物(SN-38)與血管內皮生長因子小干擾RNA(VEGF siRNA)作為大腸癌顯影及治療之評估
12. 利用Eudragit包覆幾丁聚醣/褐藻酸奈米粒子於大腸直腸癌之偵測
13. EGFR標靶型胜肽修飾於酸鹼應答性高分子微胞載體於光動力治療之應用
14. 製備溫感性奈米微胞載體針對癌症做藥物傳輸及光熱治療
15. 製備多壁奈米碳管搭載超順磁性氧化鐵作為化療藥物Oxaliplatin 之奈米藥物載體並評估其藥物釋放及核磁共振顯影之能力