跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉邦卿
研究生(外文):Pang-Ching Liu
論文名稱:交聯電紡纖維對機械性質與力生物學的影響
論文名稱(外文):Crosslinked Electrospun Fibers Change Scaffold Mechanics and Mechanobiology
指導教授:趙本秀
指導教授(外文):Pen-Hsiu Chao
口試委員:郭柏齡游佳欣
口試委員(外文):Po-Ling KuoJia-Shing Yu
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:26
中文關鍵詞:靜電紡絲組織工程交聯韌帶
外文關鍵詞:electrospun fibercrosslinkingbondingtissue engineeringmechanobiology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
天然韌帶是由許多具有平行排列結構的膠原蛋白纖維所組成的,而我們先前的研究指出,將細胞種在此種結構的纖維支架可以讓細胞表現出較好的細胞外間質分泌,但是天然韌帶不單單是只有許多平行的膠原蛋白纖維所組成的,纖維在組織中並且互相交聯補強其結構,我們的實驗主要是做出具有交聯性質的纖維支架和探討其機械性質與細胞生理性質的影響。結果顯示出交聯的電紡纖維在垂直方向的機械性質有提升同時有保留原本電紡纖維的排列性,共軛焦顯微鏡顯示出細胞種在交聯的材料並不會改變原本的細胞型態,但在受到機械刺激後,tenascin-C 的基因表現有所改變,代表交聯後的纖維結構在受到拉伸時的反應不同,這說明了交聯的結構會降低在微環境中的形變。未來希望藉由調整電紡纖維的孔隙度和降低交聯的溫度來達到更理想的機械性質來研究細胞的表現。

Native ligament is formed by aligned wavy collagen fiber. Previous study has shown that cells have better ECM production on biomimetic wavy electrospun fiber scaffold. But only having architecture similarity is insufficient. Collagen fibers are cross-linked in native tissue which contribute to material’s properties. The aim of this study is to generate bonding fiber and investigate the influence of biomimetic bonded electropsun fibers on material’s mechanical properties and cell physiology. Our results show that bonded fiber has better mechanical properties in transverse stretch without changes in fiber scaffold morphology. Confocal image and mRNA expression also shows that cell has no significant change in morphology and phenotype in bonding fiber. And gene expression response of tenascin-C to mechanical stimulation is different in bond group, which means the bonded fiber has different strain transfer in loading. Future studies will change porosity of PLLA fiber and reduce bonded temperature to optimized mechanical properties of the scaffold and investigate cell’s phenotype.

List of Figure i
中文摘要 ii
Abstract iii
Chapter 1 Introduction 1
1.1 Research objective 1
1.2 Ligament Tissue Engineering 1
1.3 Electrospinning 2
1.4 Bonding for Electrospun Fibers 2
1.5 Mechanical Stimulation 3
Chapter 2 Material and Method 4
2.1 Scaffold Preparation 4
2.2 Bonding Scaffold Preparation 5
2.3 Characterization of Electrospun fiber 5
2.4 Polymer characterization 6
2.6 Cell culture 7
2.7 RNA Extraction 7
2.8 Quantification of mRNA Levels 7
2.9 Cell Morphology 8
2.10 Statistical analysis 8
Chapter 3 Result 9
3.1 Mechanical Properties 9
3.2 Fiber Waviness Analysis 9
3.3 Cell morphology 10
3.4 Substrate and dynamic loading effects cell phenotype 10
3.5 Thermal analysis 11
Chapter 4 Disscussion 12

List of Figure

Figure 1. Definition of straightness parameter of fibers……………….................14
Figure 2. Stress-strain curve of straight and wavy fiber with and without bonding, toe region decrease in wavy-bonding group. 16
Figure 3. Mechanical properties of the fiber after treatment. 18
Figure 4. Waviness of each group. 19
Figure 5. Confocal image of cell morphology. 20
Figure 6. Cell morphology at original control group and PVA washout group within mRNA gene expression. 21
Figure 7. Tenascin-C and Collagen Type III mRNA expression of control and cyclic loading. 22
Figure 8. DSC heating scans in bonding group and non-bonding group at 10°C/ min. 23
Figure 9. PLLA electrospun fiber being stretched in non-bonding and bonding group. 24



1.Birch, H.L., C.T. Thorpe, and A.P. Rumian, Specialisation of extracellular matrix for function in tendons and ligaments. Muscles, Ligaments and Tendons Journal, 2013. 3(1): p. 12-22.
2.Buehler, M.J., Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies. Journal of the Mechanical Behavior of Biomedical Materials, 2008. 1(1): p. 59-67.
3.Amis, A. and G. Dawkins, Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. Bone & Joint Journal, 1991. 73-B(2): p. 260-267.
4.Kaeding, C.C., et al., Allograft Versus Autograft Anterior Cruciate Ligament Reconstruction: Predictors of Failure From a MOON Prospective Longitudinal Cohort. Sports Health, 2011. 3(1): p. 73-81.
5.Bashur, C.A., et al., Effect of Fiber Diameter and Alignment of Electrospun Polyurethane Meshes on Mesenchymal Progenitor Cells. Tissue Engineering Part A, 2009. 15(9): p. 2435-2445.
6.Erisken, C., et al., Scaffold Fiber Diameter Regulates Human Tendon Fibroblast Growth and Differentiation. Tissue Engineering Part A, 2012. 19(3-4): p. 519-528.
7.Thayer, P.S., et al., Fiber/collagen composites for ligament tissue engineering: influence of elastic moduli of sparse aligned fibers on mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 2016. 104(8): p. 1894-1901.
8.Pen-hsiu Grace, C., H. Hsiang-Yi, and T. Hsiao-Yun, Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype. Biofabrication, 2014. 6(3): p. 035008.
9.You, Y., et al., Thermal interfiber bonding of electrospun poly(l-lactic acid) nanofibers. Materials Letters, 2006. 60(11): p. 1331-1333.
10.Ramaswamy, S., L.I. Clarke, and R.E. Gorga, Morphological, mechanical, and electrical properties as a function of thermal bonding in electrospun nanocomposites. Polymer, 2011. 52(14): p. 3183-3189.
11.Mikos, A.G., et al., Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. Journal of Biomedical Materials Research, 1993. 27(2): p. 183-189.
12.Hsiong, S.X., et al., Differentiation stage alters matrix control of stem cells. Journal of Biomedical Materials Research Part A, 2008. 85A(1): p. 145-156.
13.Rezakhaniha, R., et al., Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomechanics and Modeling in Mechanobiology, 2012. 11(3): p. 461-473.
14.Ribeiro, C., et al., Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011. 12(1).
15.Hernández Sánchez, F., et al., Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 2005. 6(6): p. 3283-3290.
16.Yasuniwa, M., et al., Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer, 2008. 49(7): p. 1943-1951.
17.Silver, F.H., I. Horvath, and D.J. Foran, Viscoelasticity of the Vessel Wall: The Role of Collagen and Elastic Fibers. 2001. 29(3): p. 279-302.
18.Ushiki, T., Collagen Fibers, Reticular Fibers and Elastic Fibers. A Comprehensive Understanding from a Morphological Viewpoint. Archives of Histology and Cytology, 2002. 65(2): p. 109-126.
19.Liu, W., et al., Generation of Electrospun Nanofibers with Controllable Degrees of Crimping Through a Simple, Plasticizer-Based Treatment. Advanced Materials, 2015. 27(16): p. 2583-2588.
20.Takahashi, K., et al., Crystal transformation from the α- to the β-form upon tensile drawing of poly(l-lactic acid). Polymer, 2004. 45(14): p. 4969-4976.
21.Cocca, M., et al., Influence of crystal polymorphism on mechanical and barrier properties of poly(l-lactic acid). European Polymer Journal, 2011. 47(5): p. 1073-1080.
22.Tábi, T., S. Hajba, and J.G. Kovács, Effect of crystalline forms (α′ and α) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. European Polymer Journal, 2016. 82: p. 232-243.
23.Han, Woojin M., et al., Macro- to Microscale Strain Transfer in Fibrous Tissues is Heterogeneous and Tissue-Specific. Biophysical Journal, 2013. 105(3): p. 807-817.
24.Fang, F. and S.P. Lake, Multiscale strain analysis of tendon subjected to shear and compression demonstrates strain attenuation, fiber sliding, and reorganization. Journal of Orthopaedic Research, 2015. 33(11): p. 1704-1712.
25.Yoon, J.H. and J. Halper, Tendon proteoglycans: Biochemistry and function. Journal of Musculoskeletal Neuronal Interactions, 2005. 5(1): p. 22-34.
26.Schönherr, E., et al., Decorin-Type I Collagen Interaction: PRESENCE OF SEPARATE CORE PROTEIN-BINDING DOMAINS. Journal of Biological Chemistry, 1995. 270(15): p. 8877-8883.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊