|
1.Birch, H.L., C.T. Thorpe, and A.P. Rumian, Specialisation of extracellular matrix for function in tendons and ligaments. Muscles, Ligaments and Tendons Journal, 2013. 3(1): p. 12-22. 2.Buehler, M.J., Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies. Journal of the Mechanical Behavior of Biomedical Materials, 2008. 1(1): p. 59-67. 3.Amis, A. and G. Dawkins, Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. Bone & Joint Journal, 1991. 73-B(2): p. 260-267. 4.Kaeding, C.C., et al., Allograft Versus Autograft Anterior Cruciate Ligament Reconstruction: Predictors of Failure From a MOON Prospective Longitudinal Cohort. Sports Health, 2011. 3(1): p. 73-81. 5.Bashur, C.A., et al., Effect of Fiber Diameter and Alignment of Electrospun Polyurethane Meshes on Mesenchymal Progenitor Cells. Tissue Engineering Part A, 2009. 15(9): p. 2435-2445. 6.Erisken, C., et al., Scaffold Fiber Diameter Regulates Human Tendon Fibroblast Growth and Differentiation. Tissue Engineering Part A, 2012. 19(3-4): p. 519-528. 7.Thayer, P.S., et al., Fiber/collagen composites for ligament tissue engineering: influence of elastic moduli of sparse aligned fibers on mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 2016. 104(8): p. 1894-1901. 8.Pen-hsiu Grace, C., H. Hsiang-Yi, and T. Hsiao-Yun, Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype. Biofabrication, 2014. 6(3): p. 035008. 9.You, Y., et al., Thermal interfiber bonding of electrospun poly(l-lactic acid) nanofibers. Materials Letters, 2006. 60(11): p. 1331-1333. 10.Ramaswamy, S., L.I. Clarke, and R.E. Gorga, Morphological, mechanical, and electrical properties as a function of thermal bonding in electrospun nanocomposites. Polymer, 2011. 52(14): p. 3183-3189. 11.Mikos, A.G., et al., Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. Journal of Biomedical Materials Research, 1993. 27(2): p. 183-189. 12.Hsiong, S.X., et al., Differentiation stage alters matrix control of stem cells. Journal of Biomedical Materials Research Part A, 2008. 85A(1): p. 145-156. 13.Rezakhaniha, R., et al., Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomechanics and Modeling in Mechanobiology, 2012. 11(3): p. 461-473. 14.Ribeiro, C., et al., Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011. 12(1). 15.Hernández Sánchez, F., et al., Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 2005. 6(6): p. 3283-3290. 16.Yasuniwa, M., et al., Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer, 2008. 49(7): p. 1943-1951. 17.Silver, F.H., I. Horvath, and D.J. Foran, Viscoelasticity of the Vessel Wall: The Role of Collagen and Elastic Fibers. 2001. 29(3): p. 279-302. 18.Ushiki, T., Collagen Fibers, Reticular Fibers and Elastic Fibers. A Comprehensive Understanding from a Morphological Viewpoint. Archives of Histology and Cytology, 2002. 65(2): p. 109-126. 19.Liu, W., et al., Generation of Electrospun Nanofibers with Controllable Degrees of Crimping Through a Simple, Plasticizer-Based Treatment. Advanced Materials, 2015. 27(16): p. 2583-2588. 20.Takahashi, K., et al., Crystal transformation from the α- to the β-form upon tensile drawing of poly(l-lactic acid). Polymer, 2004. 45(14): p. 4969-4976. 21.Cocca, M., et al., Influence of crystal polymorphism on mechanical and barrier properties of poly(l-lactic acid). European Polymer Journal, 2011. 47(5): p. 1073-1080. 22.Tábi, T., S. Hajba, and J.G. Kovács, Effect of crystalline forms (α′ and α) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. European Polymer Journal, 2016. 82: p. 232-243. 23.Han, Woojin M., et al., Macro- to Microscale Strain Transfer in Fibrous Tissues is Heterogeneous and Tissue-Specific. Biophysical Journal, 2013. 105(3): p. 807-817. 24.Fang, F. and S.P. Lake, Multiscale strain analysis of tendon subjected to shear and compression demonstrates strain attenuation, fiber sliding, and reorganization. Journal of Orthopaedic Research, 2015. 33(11): p. 1704-1712. 25.Yoon, J.H. and J. Halper, Tendon proteoglycans: Biochemistry and function. Journal of Musculoskeletal Neuronal Interactions, 2005. 5(1): p. 22-34. 26.Schönherr, E., et al., Decorin-Type I Collagen Interaction: PRESENCE OF SEPARATE CORE PROTEIN-BINDING DOMAINS. Journal of Biological Chemistry, 1995. 270(15): p. 8877-8883.
|