跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 00:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳皙文
研究生(外文):Hsi-wen Chen
論文名稱:幾丁聚醣調控皮膚黑色素生成與運輸之機制探討
論文名稱(外文):The Modulation Effects of Chitosan on Melanin Synthesis and Melanosomes Uptake
指導教授:楊台鴻鄭乃禎鄭乃禎引用關係
指導教授(外文):Tai-Horng YoungNai-Chen Cheng
口試委員:林頌然
口試委員(外文):Sung-Jan Lin
口試日期:2015-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:73
中文關鍵詞:幾丁聚醣抑制黑色素美白B16F10黑色素瘤細胞人類初代黑色素細胞人類角質細胞株
外文關鍵詞:Chitosanhyperpigmentation disordersdepigmentationmelaninB16F10 melanoma cellshuman melanocyteshuman keratinocytes HaCaT cell line
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
不論在醫學美容或臨床上,抑制皮膚黑色素(melanin)生成皆是極為重要的一項需求,雖然目前已知藥物中已有部分應用於抑制黑色素生成之研究,但仍然無法達到最佳效果。幾丁聚醣(chitosan)為一種具有良好生物相容性及抗菌性的天然材料,此項研究係探討幾丁聚醣對皮膚美白之效果,更針對三個階段(黑色素生成、黑色素小體(melanosome)運送及角質細胞對黑色素小體進行胞吞作用)分別作探討。欲釐清幾丁聚醣之特性對抑制黑色素生成所造成的影響,我們也將不同分子量及不同去乙醯度(degree of deacetylation, D.D.)之幾丁聚醣與B16F10黑色素瘤細胞(melanoma cells)進行培養進而探討在基礎條件或有加黑素細胞激素(alpha melanocyte-stimulation hormone, αMSH)刺激條件下對黑色素生成量進行分析。此外,我們也建立了一個共培養系統研究人類初代黑色素細胞(melanocytes)與人類角質細胞株(HaCaT)欲研究於幾丁聚醣培養環境下之相互作用。研究結果指出不同分子量之幾丁聚醣對於抑制黑色素生成之效果相同,而增加其去乙醯度則會使黑色素生成量顯著減少。並且,幾丁聚醣於前述研究美白效果之三個階段(黑色素生成、黑色素小體運送及角質細胞對黑色素小體進行胞吞作用)皆有顯著抑制的結果。根據結果,由於幾丁聚醣對於皮膚美白有全面性效用,因此我們認為這項研究將可提供一種方法利用幾丁聚醣達到有效抑制黑色素生成之目的。

Decreasing skin pigmentation is an unmet need encountered in various medical or cosmetic conditions. Although some pharmaceutical agents are available for inhibiting melanogenesis, their effects are not ideal. Chitosan, a natural compound extracted from shell fish sources, is a well-known biocompatible and anti-bacterial material. The present research aimed to investigate the skin whitening effects of chitosan on three related processes—melanin synthesis, melanosomes release and melanosomes uptake; and evaluate the possible mechanisms involved. To clarify how the characteristic of chitosan inhibited the melanin synthesis, different molecular weight and different degree of deacetylation (D.D.) of chitosan were added into the culture medium with B16F10 melanoma cells in the basal or αMSH-stimulated condition. Also, our co-culture system is able to study the melanosomes release and uptake between human melanocytes and human keratinocytes HaCaT cell line under the presence of chitosan. Our results have revealed that molecular weight of chitosan would not affect melanogenesis while increasing D.D. of chitosan would enhance the depigmentation effect. Moreover, chitosan can significantly inhibit melanin synthesis and melanosomes release on pigment cells; and lessen melanosomes uptake on keratinocytes. Given the inhibition effect of chitosan on these three processes, we suggest that chitosan is a potential candidate as the treatment of hyperpigmentation disorders.

中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURE vi
Chapter 1 Introduction 1
1.1 Cells 1
1.1.1 Melanocytes 1
1.1.2 Keratinocytes 3
1.2 Melanogenesis 4
1.2.1 Biosynthesis Pathway 4
1.2.2 Regulation by UVB, Endocrine, Paracrine, and Autocrine Factors 5
1.3 Hyperpigmentation Disorders 7
1.4 Current Clinical Treatment of Hyperpigmentation 8
1.4.1 Regulation of Melanogenic Enzymes 8
1.4.2 Inhibition of Melanosome Transfer 10
1.4.3 Dispersion of Melanin and Acceleration of Skin Turnover 10
1.4.4 Other Treatment of Pigmented Lesions 10
1.5 Notable Depigmenting and Lightening Agents 11
1.5.1 Chemical Agents 11
1.5.2 Biological Agents 14
1.6 Establishment of a Melanocytes-Keratinocytes Co-culture System 14
1.7 Chitosan 15
1.8 Motive and Aims 17
1.9 Research Framework 19
Chapter 2 Materials and Methods 20
2.1 Materials 20
2.1.1. Chemicals and Reagents 20
2.1.2. Cell Culture 21
2.2 Experimental Equipments 21
2.3 Solution Formula 21
2.3.1. DMEM-HG Culture Medium 21
2.3.2. Modified Melanocyte Medium (MMM) 22
2.3.3. Treatment-containing Culture Medium 22
2.4 Methods 23
2.4.1. Cell Culture 23
2.4.1.1. Melanoma B16F10 23
2.4.1.2. Human Melanocytes 23
2.4.1.3. Human Keratinocytes Cell line HaCaT 23
2.4.1.4. Establishment of a Melanocytes-HaCaT Co-culture System 24
2.4.2. Preparation of various modified chitosan 25
2.4.2.1. FITC-labeled chitosan 25
2.4.2.2. Different Degree of Deacetylated Chitosan 26
2.4.3. Isolation of Melanosomes Secreted by Melanocytes 27
2.4.4. Cell Viability Test 28
2.4.5. Determination of Melanin Content 28
2.4.5.1. Melanoma B16F10 and Human Melanocytes 28
2.4.6. Determination of Tyrosinase activity 29
2.4.7. Observation of FITC-chitosan in culture medium 30
2.4.8. Examination of Melanosomes Uptake in HaCaT 30
2.4.9. Western Blot analysis 31
2.4.10. Statistical Analysis 31
Chapter 3 Results & Discussions 32
PART I. Chitosan effect on Melanogenesis 32
3.1. A Dose Dependent Effect of Exogenous Chitosan On Depigmentation 32
3.1.1. Cell Viability 32
3.1.2. Inhibition on Melanin Content 32
3.2. The Effects of Chitosan Monomers on Depigmentation 33
3.2.1. Cell Viability 33
3.2.2. Inhibition on Melanin Content 34
3.3. The Effects of Chitosan with Different Molecular Weight on Depigmentation 35
3.3.1. Cell Viability 35
3.3.2. Inhibition on Melanin Content 35
3.4. The Effects of Chitosan with Different Degree of Deacetylation on Depigmentation 35
3.4.1. The Characterization of Chitosan for the Degree of Deacetylation (D.D.) 35
3.4.2. Cell Viability 36
3.4.3. Inhibition on Melanin Content 37
3.5. Observation of Melanoma Cells Cultured with FITC-chitosan 38
3.6. Investigating the Role of Chitosan in Molecular Mechanisms of Melanogenesis Inhibition 39
3.6.1. Inhibitory Effect on the Melanogenic-related Protein Expression 39
3.6.2. Inhibition on Tyrosinase Activity 40
PART II. Chitosan Effect on Melanosomes Release and Uptake 42
3.7. The Effect of Chitosan on Melanosomes Release from Melanocytes 42
3.8. The Effect of Chitosan on Melanosomes Uptake on Keratinocytes Phagocytosis 43
3.8.1. Observation in a Keratinocytes Mono-culture System 43
3.8.2. Observation in a Melanocytes-HaCaT Co-culture System 44
3.8.3. The Effects of Chitosan on PAR-2 Expression 45
3.9. The Overall Effects of Chitosan on Depigmentation, Melanosomes Release and Uptake in a Melanocytes-Keratinocytes Co-culture System 46
Chapter 4 Conclusion 47
Chapter 5 References 49
Chapter 6 Figures 54



[1] Olivares C, Jimenez-Cervantes C, Lozano JA, Solano F, Garcia-Borron JC. The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase. The Biochemical journal. 2001;354:131-9.
[2] Hirobe T. Control of Melanocyte Proliferation and Differentiation in the Mouse Epidermis. Pigment Cell Research. 1992;5:1-11.
[3] Minwalla L, Zhao Y, Le Poole IC, Wickett RR, Boissy RE. Keratinocytes play a role in regulating distribution patterns of recipient melanosomes in vitro. J Invest Dermatol. 2001;117:341-7.
[4] Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK, et al. Survey and mechanism of skin depigmenting and lightening agents. Phytother Res. 2006;20:921-34.
[5] Raposo G, Marks MS. Melanosomes – dark organelles enlighten endosomal membrane transport. Nature reviews Molecular cell biology. 2007;8:786-97.
[6] Mottaz JH, Zelickson AS. Melanin Transfer: A Possible Phagocytic Process1. The Journal of Investigative Dermatology. 1967;49:605-10.
[7] Yamamoto O, Bhawan J. Three modes of melanosome transfers in Caucasian facial skin: hypothesis based on an ultrastructural study. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society. 1994;7:158-69.
[8] Seiberg M. Keratinocyte-melanocyte interactions during melanosome transfer. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society. 2001;14:236-42.
[9] Scott G, Leopardi S, Printup S, Madden BC. Filopodia are conduits for melanosome transfer to keratinocytes. Journal of cell science. 2002;115:1441-51.
[10] Van Den Bossche K, Naeyaert JM, Lambert J. The quest for the mechanism of melanin transfer. Traffic (Copenhagen, Denmark). 2006;7:769-78.
[11] Singh SK, Nizard C, Kurfurst R, Bonte F, Schnebert S, Tobin DJ. The silver locus product (Silv/gp100/Pmel17) as a new tool for the analysis of melanosome transfer in human melanocyte-keratinocyte co-culture. Experimental dermatology. 2008;17:418-26.
[12] Choi EJ, Kang YG, Kim J, Hwang JK. Macelignan inhibits melanosome transfer mediated by protease-activated receptor-2 in keratinocytes. Biological & pharmaceutical bulletin. 2011;34:748-54.
[13] Jung E, Lee JA, Shin S, Roh KB, Kim JH, Park D. Madecassoside inhibits melanin synthesis by blocking ultraviolet-induced inflammation. Molecules (Basel, Switzerland). 2013;18:15724-36.
[14] Scott G, Leopardi S, Parker L, Babiarz L, Seiberg M, Han R. The proteinase-activated receptor-2 mediates phagocytosis in a Rho-dependent manner in human keratinocytes. J Invest Dermatol. 2003;121:529-41.
[15] Ando H, Niki Y, Ito M, Akiyama K, Matsui MS, Yarosh DB, et al. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J Invest Dermatol. 2012;132:1222-9.
[16] Cooksey CJ, Garratt PJ, Land EJ, Pavel S, Ramsden CA, Riley PA, et al. Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. J Biol Chem. 1997;272:26226-35.
[17] Kobayashi T, Vieira WD, Potterf B, Sakai C, Imokawa G, Hearing VJ. Modulation of melanogenic protein expression during the switch from eu- to pheomelanogenesis. Journal of cell science. 1995;108 ( Pt 6):2301-9.
[18] Borges CR, Roberts JC, Wilkins DG, Rollins DE. Relationship of melanin degradation products to actual melanin content: application to human hair. Analytical biochemistry. 2001;290:116-25.
[19] Martinez-Esparza M, Ferrer C, Castells MT, Garcia-Borron JC, Zuasti A. Transforming growth factor beta1 mediates hypopigmentation of B16 mouse melanoma cells by inhibition of melanin formation and melanosome maturation. Int J Biochem Cell Biol. 2001;33:971-83.
[20] Halaban R. Responses of Cultured Melanocytes to Defined Growth Factors. Pigment Cell Research. 1988;1:18-26.
[21] Halaban R, Kwon BS, Ghosh S, Delli Bovi P, Baird A. bFGF as an autocrine growth factor for human melanomas. Oncogene research. 1988;3:177-86.
[22] Mountjoy KG, Robbins LS, Mortrud MT, Cone RD. The cloning of a family of genes that encode the melanocortin receptors. Science. 1992;257:1248-51.
[23] Bertolotto C, Busca R, Abbe P, Bille K, Aberdam E, Ortonne JP, et al. Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol Cell Biol. 1998;18:694-702.
[24] Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society. 2006;19:550-71.
[25] Hachiya A, Kobayashi A, Yoshida Y, Kitahara T, Takema Y, Imokawa G. Biphasic expression of two paracrine melanogenic cytokines, stem cell factor and endothelin-1, in ultraviolet B-induced human melanogenesis. The American journal of pathology. 2004;165:2099-109.
[26] Hattori H, Kawashima M, Ichikawa Y, Imokawa G. The epidermal stem cell factor is over-expressed in lentigo senilis: implication for the mechanism of hyperpigmentation. J Invest Dermatol. 2004;122:1256-65.
[27] Imokawa G, Ishida K. Inhibitors of intracellular signaling pathways that lead to stimulated epidermal pigmentation: perspective of anti-pigmenting agents. International journal of molecular sciences. 2014;15:8293-315.
[28] Negroiu G, Branza-Nichita N, Petrescu AJ, Dwek RA, Petrescu SM. Protein specific N-glycosylation of tyrosinase and tyrosinase-related protein-1 in B16 mouse melanoma cells. The Biochemical journal. 1999;344 Pt 3:659-65.
[29] Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J Biol Chem. 1997;272:503-9.
[30] Fang D, Tsuji Y, Setaluri V. Selective down-regulation of tyrosinase family gene TYRP1 by inhibition of the activity of melanocyte transcription factor, MITF. Nucleic acids research. 2002;30:3096-106.
[31] Passi S, Nazzaro-Porro M. Molecular basis of substrate and inhibitory specificity of tyrosinase: phenolic compounds. Br J Dermatol. 1981;104:659-65.
[32] Sharlow ER, Paine CS, Babiarz L, Eisinger M, Shapiro S, Seiberg M. The protease-activated receptor-2 upregulates keratinocyte phagocytosis. Journal of cell science. 2000;113 ( Pt 17):3093-101.
[33] Yoshimura K, Tsukamoto K, Okazaki M, Virador VM, Lei TC, Suzuki Y, et al. Effects of all-trans retinoic acid on melanogenesis in pigmented skin equivalents and monolayer culture of melanocytes. Journal of dermatological science. 2001;27 Suppl 1:S68-75.
[34] Smith WP. The effects of topical l(+) lactic Acid and ascorbic Acid on skin whitening. International journal of cosmetic science. 1999;21:33-40.
[35] Javaheri SM, Handa S, Kaur I, Kumar B. Safety and efficacy of glycolic acid facial peel in Indian women with melasma. International journal of dermatology. 2001;40:354-7.
[36] Brazzini B, Hautmann G, Ghersetich I, Hercogova J, Lotti T. Laser tissue interaction in epidermal pigmented lesions. Journal of the European Academy of Dermatology and Venereology : JEADV. 2001;15:388-91.
[37] Palumbo A, d''Ischia M, Misuraca G, Prota G. Mechanism of inhibition of melanogenesis by hydroquinone. Biochim Biophys Acta. 1991;1073:85-90.
[38] Verallo-Rowell VM, Verallo V, Graupe K, Lopez-Villafuerte L, Garcia-Lopez M. Double-blind comparison of azelaic acid and hydroquinone in the treatment of melasma. Acta dermato-venereologica Supplementum. 1989;143:58-61.
[39] Burdock GA, Soni MG, Carabin IG. Evaluation of health aspects of kojic acid in food. Regulatory toxicology and pharmacology : RTP. 2001;33:80-101.
[40] Parrish FW, Wiley BJ, Simmons EG, Long L, Jr. Production of aflatoxins and kojic acid by species of Aspergillus and Penicillium. Applied microbiology. 1966;14:139.
[41] Piamphongsant T. Treatment of melasma: a review with personal experience. International journal of dermatology. 1998;37:897-903.
[42] Maeda K, Fukuda M. Arbutin: mechanism of its depigmenting action in human melanocyte culture. The Journal of pharmacology and experimental therapeutics. 1996;276:765-9.
[43] Chakraborty AK, Funasaka Y, Komoto M, Ichihashi M. Effect of arbutin on melanogenic proteins in human melanocytes. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society. 1998;11:206-12.
[44] Curto EV, Kwong C, Hermersdorfer H, Glatt H, Santis C, Virador V, et al. Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochemical pharmacology. 1999;57:663-72.
[45] Elmore AR. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics. International journal of toxicology. 2005;24 Suppl 2:51-111.
[46] Martinez-Esparza M, Solano F, Garcia-Borron JC. Independent regulation of tyrosinase by the hypopigmenting cytokines TGF beta1 and TNF alpha and the melanogenic hormone alpha-MSH in B16 mouse melanocytes. Cellular and molecular biology (Noisy-le-Grand, France). 1999;45:991-1000.
[47] Duval C, Regnier M, Schmidt R. Distinct melanogenic response of human melanocytes in mono-culture, in co-culture with keratinocytes and in reconstructed epidermis, to UV exposure. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society. 2001;14:348-55.
[48] Lei TC, Virador VM, Vieira WD, Hearing VJ. A melanocyte-keratinocyte coculture model to assess regulators of pigmentation in vitro. Analytical biochemistry. 2002;305:260-8.
[49] Jang W, Lambropoulos J, Woo JK, Peluso CE, Schwob JE. Maintaining epitheliopoietic potency when culturing olfactory progenitors. Experimental neurology. 2008;214:25-36.
[50] Ilium L. Chitosan and Its Use as a Pharmaceutical Excipient. Pharmaceutical research. 1998;15:1326-31.
[51] Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24:2339-49.
[52] Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18:567-75.
[53] Wenling C, Duohui J, Jiamou L, Yandao G, Nanming Z, Xiufang Z. Effects of the degree of deacetylation on the physicochemical properties and Schwann cell affinity of chitosan films. Journal of biomaterials applications. 2005;20:157-77.
[54] Imokawa G. Analysis of carbohydrate properties essential for melanogenesis in tyrosinases of cultured malignant melanoma cells by differential carbohydrate processing inhibition. J Invest Dermatol. 1990;95:39-49.
[55] Bissett DL, Farmer T, McPhail S, Reichling T, Tiesman JP, Juhlin KD, et al. Genomic expression changes induced by topical N-acetyl glucosamine in skin equivalent cultures in vitro. Journal of cosmetic dermatology. 2007;6:232-8.
[56] Chen YF, Chang JS, Yang PY, Hung CM, Huang MH, Hu DN. Transplant of cultured autologous pure melanocytes after laser-abrasion for the treatment of segmental vitiligo. The Journal of dermatology. 2000;27:434-9.
[57] Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharmaceutical research. 2002;19:1488-94.
[58] Ahmed SA, Gogal RM, Jr., Walsh JE. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods. 1994;170:211-24.
[59] Takahashi H, Parsons PG. Rapid and reversible inhibition of tyrosinase activity by glucosidase inhibitors in human melanoma cells. J Invest Dermatol. 1992;98:481-7.
[60] Jara JR, Solano F, Lozano JA. Assays for mammalian tyrosinase: a comparative study. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society. 1988;1:332-9.
[61] Winder AJ, Harris H. New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase. European journal of biochemistry / FEBS. 1991;198:317-26.
[62] Hwang J-H, Lee BM. Inhibitory Effects of Plant Extracts on Tyrosinase, l-DOPA Oxidation, and Melanin Synthesis. Journal of Toxicology and Environmental Health, Part A. 2007;70:393-407.
[63] Chang TS. An updated review of tyrosinase inhibitors. International journal of molecular sciences. 2009;10:2440-75.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top