跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 20:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施議鈞
研究生(外文):Yi-Chun Shih
論文名稱:剔除N端乙醯基轉移酶有助於強化能量代謝並保護小鼠免於飲食引起之肥胖症
論文名稱(外文):Naa10p knockout protects mice form diet-induced obesity through enhanced energy consumption
指導教授:阮麗蓉阮麗蓉引用關係
指導教授(外文):Jung-Juan Li
口試委員:李芳仁莊立民呂仁
口試委員(外文):Fang-Jen LeeLee-Ming ChuangJean Lu
口試日期:2016-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:87
中文關鍵詞:乙醯基轉移酶肥胖代謝脂肪分化棕色脂肪棕化
外文關鍵詞:Naa10N-α-acetyltransferase 10diet-induced obesityadipogenesisPparγ3T3-L1browning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Naa10p (N-α-acetyltransferase 10 protein) 作為主要的乙醯基轉移酶,可於超過50%的哺乳類蛋白質加上乙醯基。此外,Naa10p也是個具有DNA結合能力的蛋白質,能夠促進甲基轉移酶DNA methyltransferase 1 (DNMT1)與DNA結合,調控基因甲基化。已知Naa10p在癌症形成扮演重要角色,Naa10p突變則造成嚴重發育遲緩及與X染色體關聯人類疾病。我們實驗室研究更指出,Naa10p剔除小鼠較正常小鼠瘦小,平均體重減少百分之二十。本篇論文,主要研究Naa10p在脂肪生成與代謝上所扮演的角色。本篇研究發現,長期餵食高脂飼料的Naa10基因剔除鼠比正常小鼠能抵抗飲食引起的肥胖與胰島素抗性。長期餵食高脂飼料的Naa10基因剔除鼠的皮下脂肪較少,並伴隨著較強的生理代謝率以及脂肪棕化現象。此外,缺少Naa10p的白脂肪前驅細胞3T3-L1在脂肪生成的能力上有所缺損。這個現象可以透過重新表現正常Naa10p或是給與過氧化體增生活化接受器(Pparγ)之促進劑troglitazone而恢復。透過表現不同Naa10p突變蛋白,我們也證實此現象主要是受到Naa10p乙醯基轉移酶活性的調控。除此之外,我們也提出Naa10p能夠直接與Pparγ交互作用的證據。Pparγ在脂肪生成中扮演著核心的調控角色,同時也在白色脂肪組織中生成似棕色脂肪細胞的過程中扮演決定性的角色,且此現象受到Pparγ上離胺酸乙醯化的調控。因此,Naa10p或許是透過改變Pparγ的乙醯化來抑制脂肪細胞的棕化現象並促進前驅細胞分化為白色脂肪的品系。根據我們的研究,我們提出Naa10p在脂肪生成與代謝上所扮演的新角色,並提出一個具有潛力針對飲食引起的肥胖的治療策略。

Naa10p (N-α-acetyltransferase 10 protein) is the major N-α-acetyltransferase that acetylates more than 50% of proteins in mammalian cells. Naa10p is also a DNA binding protein which mediates gene-specific DNA methylation by recruiting DNMT1 (DNA methyltransferase 1). Studies have indicated that Naa10p plays an important role in cancer formation and Naa10p mutation causes severe developmental delay in human. Our laboratory also found that Naa10p knockout mice showed 20% reduction in body weight and size. This thesis aims to understand the role of Naa10p in adipogenesis and metabolism. We found that Naa10 knockout (Naa10-KO) mice were protected from high fat diet (HFD)-induced obesity and insulin resistance. HFD-fed Naa10-KO mice had less subcutaneous fat which is also accompanied with increased energy expenditure and browning of preadipocyte. In addition, white preadipocyte 3T3-L1 with Naa10p depletion led to impaired adipogenesis which could be rescued by adding back WT Naa10p or treating with Pparγ agonist troglitazone. We also demonstrated that this phenotype is acetyltransferase activity-dependent as adding back enzyme-dead Naa10 mutant protein could not rescue the phenotype. Furthermore, we provided evidence that Naa10p directly interacts with Pparγ. Pparγ plays a central role in adipogenesis and determination of white-to-brown plasticity in white adipose tissue which is regulated by lysine acetylation. Thus, Naa10p might inhibit browning and promote white lineage differentiation through mediating acetylation of Pparγ. These results reveal a novel role of Naa10p in adipogenesis and metabolism which provide a potential new therapeutic strategy against diet-induce obesity.


Abstract………………………………………………………………………………..1
中文摘要……………………………………………………………………………...2
Introduction……………………………………………………………………………3
Obesity is one of the prevalent diseases in the world.…………………………….3
Adipogenesis is separated into two phases and regulated by a transcriptional
cascade…………………………………………………………………………….3
Brown adipocyte can reduce obesity through the dissipation of energy as heat....…5
PPARγ and PGC1α determine adipocyte fate to white or brown by acetylation…...6
PPARγ agonist TZDs promote browning by increasing the stability of PRDM16
and enhancing the interaction of Prdm16 with SIRT1-dependent deacetylation of
PPARγ……………………………………………………………………………..7
N-α-acetyltransferase 10 protein acetylates more than 80% of proteins in human…8
Naa10p has DNA-binding ability………………………………………...…………9
Human Naa10p has an important role in cancer formation…………………...10
Human Naa10p deficiency results in developmental delays and abnormally low
subcutaneous fat………………………………………………………………….10
Naa10-KO mice have lower body weight and resist to diet-induced obesity…..…11
Study Purposes…………………………………………………...…………………..13
Materials and Methods……………………………………………...………………..14
Animals………………………………………………………...………………….14
Cell culture and differentiation………………………..…………………………...14
Plasmids and antibodies…………………………………………………………16
Lentiviral transductions………………………………………………………….17
RNA purification, reverse transcription, and quantitative PCR……….…………..17
Histology and blood biochemistry analysis……………………………………..18
Cell proliferation rate……………………………………………………………18
Immunofluorescence………………………………………………………………19
Glucose and insulin tolerance test…………………………………………………19
Body composition and indirect calorimetric analysis……………………………19
Cold exposure and body temperature monitoring………………………………....20
Affymetrix microarray hybridization and data analysis……………………..20
Primers…………………………………………………………………………….21
Statistical analysis……………………………………………………………….21
Result…………………………………………………………………………………22
Naa10p knockout protects mice from high-fat diet induced obesity due to
subcutaneous adipocyte hypotrophy…………………………………………….22
Naa10p knockout increases energy expenditure…………………………………24
Naa10p knockout alters glucose homeostasis and protects mice from insulin
resistance…………………………………………………………………………24
Naa10p knockout promotes browning in subcutaneous fat………………………..25
Naa10p knockout promotes skeletal muscle-like signature in inguinal white
adipose tissue…………………………………………………………………..…26
Adipogenesis is impaired in Naa10-KO MEFs and 3T3-L1………………………27
Impaired adipogenesis in Naa10-KO 3T3-L1 could be fully rescued by Pparγ
agonist……………………………………………………………………………28
Adipogenesis is Naa10p acetyltransferase activity-dependent…………………....29
Discussion………………………………………………………………………….31
Naa10p knockout protects mice from diet-induced obesity and insulin resistance.31
Naa10p regulates adipogenesis by acetylation-dependent manner………………..32
Naa10p depletion promotes browning in subcutaneous fat………………………..33
Pparγ is a potential acetylation target of Naa10p………………………………….34
References………………………………………………………………………….35
Figure 1. Naa10p knockout protects mice from high fat diet-induced obesity………48
Figure 2. Naa10p knockout protects mice from high-fat diet-induced liver steatosis.50
Figure 3. HFD fed Naa10-KO mice show less lipid accumulation in skeletal muscle51
Figure 4. HFD fed Naa10-KO mice show less lipid accumulation in brown adipose tissue………………………………………………………………………………..52
Figure 5. Naa10-KO mice with HFD-treatment show no significant difference of eWAT…………………………………………………………………….…………53
Figure 6. Naa10-KO mice with HFD-treatment have smaller inguinal white
adipocytes…………………………………………………………………………….54
Figure 7. Subcutaneous fat on Naa10-KO mice show adipocyte hypotrophy……….55
Figure 8. High fat diet fed Naa10-KO mice show increased energy expenditure…56
Figure 9. High fat diet fed Naa10-KO mice maintained higher core body temperature after cold exposure………………………………………………………………….57
Figure 10. Naa10p knockout alters glucose homeostasis and ameliorated insulin resistance on HFD treatment……………………………………………………….58
Figure 11. Naa10p knockout alters plasma lipid profile on HFD treatment……….59
Figure 12. Naa10p knockout promotes white adipocyte browning in subcutaneous fat……………………………………………………………………………………..60
Figure 13. Naa10p knockout does not change Pgc1α protein level in skeletal muscle………………………………………………………………………………...61
Figure 14. Naa10p knockout promotes skeletal muscle-like signature in inguinal white adipose tissue……………………………………………………………………...….62
Figure 15. Naa10-KO 3T3-L1 have various proliferation rate…………………….64
Figure 16. Naa10-KO/KD 3T3-L1 show impaired terminal differentiation……….65
Figure 17. Impaired terminal differentiation in Naa10-KO/KD 3T3-L1 can be rescued by troglitazone treatment……………………………………………………….…….66
Figure 18. Impaired terminal differentiation in Naa10-KO/KD 3T3-L1 can be rescued by troglitazone treatment…………………………………………………………..…67
Figure 19. WT and Naa10-KO 3T3-L1 show similar Pparγ and Cebpα gene expression pattern…………………………………………………………………..68
Figure 20. Naa10p knockout lead to higher Pparγ expression in differentiated cells, but decreased number of Pparγ-positive cells………………………………………..69
Figure 21. Naa10-KO 3T3-L1 show down-regulation in white genes and up-regulation in part of brown genes……………………………………………….70
Figure 22. Impaired adipogenesis can be rescued by overexpressing both Naa10p variant 1 and 2………………………………………………………………………..71
Figure 23. Adipogenesis is Naa10p acetyltransferase activity-dependent…………72
Figure 24. Naa10p can directly interact with and Pparγ isoform 2…………………..73
Table 1. Summary of CRISPR Naa10-KO 3T3-L1……………………….……….74
Table 2. Primer sequence…………………………………………………….……….75
Primer for genotyping……………………………………………………………75
Primers for quantitative PCR……………………………………………………..75
Appendix 1. Naa10p is highly conserved in eukaryotes from yeast to human…….78
Appendix 2. hNaa10 S37P mutation cause developmental delay and abnormally low subcutaneous fat in human………………………………………………………….79
Appendix 3. Acetyltransferase domain locates on N-terminal of Naa10p, where DNA-binding domain on C-terminal………………………………………………80
Appendix 4. Construction of Naa10-KO mice……………………………………….81
Appendix 5. Naa10 knockout in oocyte causes embryonic lethality……………….82
Appendix 6. Naa10p knockout protects mice from high-fat diet induced obesity…83
Appendix 7. The number of adipocytes in Naa10-KO MEFs was fewer than
Naa10 X/Y after adipogenic induction……………………………………………..…84
Appendix 8. Mouse fat can classify into brown fat, subcutaneous white fat and visceral white fat……………………………………………………………………85
Appendix 9. The schematic illustration of CRISPR Naa10-KO 3T3-L1 generation...86
Appendix 10. Naa10p K165A mutation shows similar acetyltransferase activity with WT………………………………………………………………………………….87


Arnesen, T., Anderson, D., Baldersheim, C., Lanotte, M., Varhaug, J.E., and Lillehaug, J.R. (2005). Identification and characterization of the human ARD1-NATH protein acetyltransferase complex. The Biochemical journal 386, 433-443.

Arnesen, T., Van Damme, P., Polevoda, B., Helsens, K., Evjenth, R., Colaert, N., Varhaug, J.E., Vandekerckhove, J., Lillehaug, J.R., Sherman, F., et al. (2009). Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proceedings of the National Academy of Sciences of the United States of America 106, 8157-8162.

Banerjee, S.S., Feinberg, M.W., Watanabe, M., Gray, S., Haspel, R.L., Denkinger, D.J., Kawahara, R., Hauner, H., and Jain, M.K. (2003). The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. The Journal of biological chemistry 278, 2581-2584.

Bell-Parikh, L.C., Ide, T., Lawson, J.A., McNamara, P., Reilly, M., and FitzGerald, G.A. (2003). Biosynthesis of 15-deoxy-delta12,14-PGJ2 and the ligation of PPARgamma. J Clin Invest 112, 945-955.

Bowers, R.R., Kim, J.W., Otto, T.C., and Lane, M.D. (2006). Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proceedings of the National Academy of Sciences of the United States of America 103, 13022-13027.

Bowers, R.R., and Lane, M.D. (2008). Wnt signaling and adipocyte lineage commitment. Cell cycle (Georgetown, Tex) 7, 1191-1196.

Caesar, R., and Blomberg, A. (2004). The stress-induced Tfs1p requires NatB-mediated acetylation to inhibit carboxypeptidase Y and to regulate the protein kinase A pathway. The Journal of biological chemistry 279, 38532-38543.

Cai, L., Sutter, B.M., Li, B., and Tu, B.P. (2011). Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Molecular cell 42, 426-437.

Calle, E.E., and Kaaks, R. (2004). Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nature reviews Cancer 4, 579-591.

Casey, J.P., Stove, S.I., McGorrian, C., Galvin, J., Blenski, M., Dunne, A., Ennis, S., Brett, F., King, M.D., Arnesen, T., et al. (2015). NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment. Scientific reports 5, 16022.

Chou, W.L., Chuang, L.M., Chou, C.C., Wang, A.H., Lawson, J.A., FitzGerald, G.A., and Chang, Z.F. (2007). Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor gamma activation. The Journal of biological chemistry 282, 18162-18172.

Chu, N.F. (2005). Prevalence of obesity in Taiwan. Obesity reviews : an official journal of the International Association for the Study of Obesity 6, 271-274.

Covas, D.T., Panepucci, R.A., Fontes, A.M., Silva, W.A., Jr., Orellana, M.D., Freitas, M.C., Neder, L., Santos, A.R., Peres, L.C., Jamur, M.C., et al. (2008). Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Experimental hematology 36, 642-654.

Dempersmier, J., Sambeat, A., Gulyaeva, O., Paul, S.M., Hudak, C.S., Raposo, H.F., Kwan, H.Y., Kang, C., Wong, R.H., and Sul, H.S. (2015). Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. Molecular cell 57, 235-246.

Dina, C., Meyre, D., Gallina, S., Durand, E., Korner, A., Jacobson, P., Carlsson, L.M., Kiess, W., Vatin, V., Lecoeur, C., et al. (2007). Variation in FTO contributes to childhood obesity and severe adult obesity. Nature genetics 39, 724-726.

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317.

Esmailpour, T., Riazifar, H., Liu, L., Donkervoort, S., Huang, V.H., Madaan, S., Shoucri, B.M., Busch, A., Wu, J., Towbin, A., et al. (2014). A splice donor mutation in NAA10 results in the dysregulation of the retinoic acid signalling pathway and causes Lenz microphthalmia syndrome. Journal of medical genetics 51, 185-196.

Fedorenko, A., Lishko, P.V., and Kirichok, Y. (2012). Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400-413.

Finck, B.N., and Kelly, D.P. (2006). PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116, 615-622.

Fisher, F.M., Kleiner, S., Douris, N., Fox, E.C., Mepani, R.J., Verdeguer, F., Wu, J., Kharitonenkov, A., Flier, J.S., Maratos-Flier, E., et al. (2012). FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes & development 26, 271-281.

Fisher, T.S., Etages, S.D., Hayes, L., Crimin, K., and Li, B. (2005). Analysis of ARD1 function in hypoxia response using retroviral RNA interference. The Journal of biological chemistry 280, 17749-17757.

Forte, G.M., Pool, M.R., and Stirling, C.J. (2011). N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS biology 9, e1001073.

Gray, S., Feinberg, M.W., Hull, S., Kuo, C.T., Watanabe, M., Sen-Banerjee, S., DePina, A., Haspel, R., and Jain, M.K. (2002). The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. The Journal of biological chemistry 277, 34322-34328.

Green, H., and Meuth, M. (1974). An established pre-adipose cell line and its differentiation in culture. Cell 3, 127-133.

Harms, M., and Seale, P. (2013). Brown and beige fat: development, function and therapeutic potential. Nature medicine 19, 1252-1263.

Healy, G.N., Wijndaele, K., Dunstan, D.W., Shaw, J.E., Salmon, J., Zimmet, P.Z., and Owen, N. (2008). Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes care 31, 369-371.

Helsens, K., Van Damme, P., Degroeve, S., Martens, L., Arnesen, T., Vandekerckhove, J., and Gevaert, K. (2011). Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. Journal of proteome research 10, 3578-3589.

Hershko, A., Heller, H., Eytan, E., Kaklij, G., and Rose, I.A. (1984). Role of the alpha-amino group of protein in ubiquitin-mediated protein breakdown. Proceedings of the National Academy of Sciences of the United States of America 81, 7021-7025.

Hua, K.T., Tan, C.T., Johansson, G., Lee, J.M., Yang, P.W., Lu, H.Y., Chen, C.K., Su, J.L., Chen, P.B., Wu, Y.L., et al. (2011). N-alpha-acetyltransferase 10 protein suppresses cancer cell metastasis by binding PIX proteins and inhibiting Cdc42/Rac1 activity. Cancer cell 19, 218-231.

Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 4, 44-57.

Huang, J.T., Welch, J.S., Ricote, M., Binder, C.J., Willson, T.M., Kelly, C., Witztum, J.L., Funk, C.D., Conrad, D., and Glass, C.K. (1999). Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400, 378-382.

Hwang, C.S., Shemorry, A., and Varshavsky, A. (2010). N-terminal acetylation of cellular proteins creates specific degradation signals. Science (New York, NY) 327, 973-977.

Jeninga, E.H., Schoonjans, K., and Auwerx, J. (2010). Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene 29, 4617-4624.

Kalvik, T.V., and Arnesen, T. (2013). Protein N-terminal acetyltransferases in cancer. Oncogene 32, 269-276.

Kanazawa, A., Kawamura, Y., Sekine, A., Iida, A., Tsunoda, T., Kashiwagi, A., Tanaka, Y., Babazono, T., Matsuda, M., Kawai, K., et al. (2005). Single nucleotide polymorphisms in the gene encoding Kruppel-like factor 7 are associated with type 2 diabetes. Diabetologia 48, 1315-1322.

Kim, K.H., Jeong, Y.T., Oh, H., Kim, S.H., Cho, J.M., Kim, Y.N., Kim, S.S., Kim do, H., Hur, K.Y., Kim, H.K., et al. (2013). Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nature medicine 19, 83-92.

Kim, S.H., Park, J.A., Kim, J.H., Lee, J.W., Seo, J.H., Jung, B.K., Chun, K.H., Jeong, J.W., Bae, M.K., and Kim, K.W. (2006). Characterization of ARD1 variants in mammalian cells. Biochemical and biophysical research communications 340, 422-427.

Kong, X., Banks, A., Liu, T., Kazak, L., Rao, R.R., Cohen, P., Wang, X., Yu, S., Lo, J.C., Tseng, Y.H., et al. (2014). IRF4 is a key thermogenic transcriptional partner of PGC-1alpha. Cell 158, 69-83.

Kuo, H.P., Lee, D.F., Chen, C.T., Liu, M., Chou, C.K., Lee, H.J., Du, Y., Xie, X., Wei, Y., Xia, W., et al. (2010). ARD1 stabilization of TSC2 suppresses tumorigenesis through the mTOR signaling pathway. Science signaling 3, ra9.

Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., et al. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109-1122.

Lee, C.-F., Ou, D.S.-C., Lee, S.-B., Chang, L.-H., Lin, R.-K., Li, Y.-S., Upadhyay, A.K., Cheng, X., Wang, Y.-C., and Hsu, H.-S. (2010). hNaa10p contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing. The Journal of clinical investigation 120, 2920-2930.

Lee, Y.H., Petkova, A.P., Mottillo, E.P., and Granneman, J.G. (2012). In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell metabolism 15, 480-491.

Lefterova, M.I., and Lazar, M.A. (2009). New developments in adipogenesis. Trends in endocrinology and metabolism: TEM 20, 107-114.

Lehmann, J.M., Moore, L.B., Smith-Oliver, T.A., Wilkison, W.O., Willson, T.M., and Kliewer, S.A. (1995). An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). The Journal of biological chemistry 270, 12953-12956.

Lepper, C., and Fan, C.M. (2010). Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis (New York, NY : 2000) 48, 424-436.

Lim, J.H., Park, J.W., and Chun, Y.S. (2006). Human arrest defective 1 acetylates and activates beta-catenin, promoting lung cancer cell proliferation. Cancer research 66, 10677-10682.

Lin, J., Handschin, C., and Spiegelman, B.M. (2005). Metabolic control through the PGC-1 family of transcription coactivators. Cell metabolism 1, 361-370.

Liszczak, G., Goldberg, J.M., Foyn, H., Petersson, E.J., Arnesen, T., and Marmorstein, R. (2013). Molecular basis for N-terminal acetylation by the heterodimeric NatA complex. Nature structural & molecular biology 20, 1098-1105.

Liu, Y., Zhou, D., Zhang, F., Tu, Y., Xia, Y., Wang, H., Zhou, B., Zhang, Y., Wu, J., Gao, X., et al. (2012). Liver Patt1 deficiency protects male mice from age-associated but not high-fat diet-induced hepatic steatosis. Journal of lipid research 53, 358-367.

Long, J.Z., Svensson, K.J., Tsai, L., Zeng, X., Roh, H.C., Kong, X., Rao, R.R., Lou, J., Lokurkar, I., Baur, W., et al. (2014). A smooth muscle-like origin for beige adipocytes. Cell metabolism 19, 810-820.

Lowell, B.B., and Spiegelman, B.M. (2000). Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652-660.

Morgan, K.P., Kapur, A., and Beatt, K.J. (2004). Anatomy of coronary disease in diabetic patients: an explanation for poorer outcomes after percutaneous coronary intervention and potential target for intervention. Heart (British Cardiac Society) 90, 732-738.

Mueller, E., Drori, S., Aiyer, A., Yie, J., Sarraf, P., Chen, H., Hauser, S., Rosen, E.D., Ge, K., Roeder, R.G., et al. (2002). Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms. The Journal of biological chemistry 277, 41925-41930.

Nagy, L., Tontonoz, P., Alvarez, J.G., Chen, H., and Evans, R.M. (1998). Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93, 229-240.

Ohno, H., Shinoda, K., Spiegelman, B.M., and Kajimura, S. (2012). PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell metabolism 15, 395-404.

Oishi, Y., Manabe, I., Tobe, K., Tsushima, K., Shindo, T., Fujiu, K., Nishimura, G., Maemura, K., Yamauchi, T., Kubota, N., et al. (2005). Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell metabolism 1, 27-39.

Park, E.C., and Szostak, J.W. (1992). ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity. The EMBO journal 11, 2087-2093.

Peirce, V., Carobbio, S., and Vidal-Puig, A. (2014). The different shades of fat. Nature 510, 76-83.

Polevoda, B., and Sherman, F. (2003). N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. Journal of molecular biology 325, 595-622.

Popp, B., Stove, S.I., Endele, S., Myklebust, L.M., Hoyer, J., Sticht, H., Azzarello-Burri, S., Rauch, A., Arnesen, T., and Reis, A. (2015). De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females. European journal of human genetics : EJHG 23, 602-609.

Qiang, L., Wang, L., Kon, N., Zhao, W., Lee, S., Zhang, Y., Rosenbaum, M., Zhao, Y., Gu, W., Farmer, S.R., et al. (2012). Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 150, 620-632.

Rajan, S., Gupta, A., Beg, M., Shankar, K., Srivastava, A., Varshney, S., Kumar, D., and Gaikwad, A.N. (2014). Adipocyte transdifferentiation and its molecular targets. Differentiation; research in biological diversity 87, 183-192.

Ren, D., Collingwood, T.N., Rebar, E.J., Wolffe, A.P., and Camp, H.S. (2002). PPARgamma knockdown by engineered transcription factors: exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. Genes & development 16, 27-32.

Ren, T., Jiang, B., Jin, G., Li, J., Dong, B., Zhang, J., Meng, L., Wu, J., and Shou, C. (2008). Generation of novel monoclonal antibodies and their application for detecting ARD1 expression in colorectal cancer. Cancer letters 264, 83-92.

Rodeheffer, M.S., Birsoy, K., and Friedman, J.M. (2008). Identification of white adipocyte progenitor cells in vivo. Cell 135, 240-249.

Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113-118.

Rope, A.F., Wang, K., Evjenth, R., Xing, J., Johnston, J.J., Swensen, J.J., Johnson, W.E., Moore, B., Huff, C.D., Bird, L.M., et al. (2011). Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. American journal of human genetics 89, 28-43.

Rosen, E.D. (2005). The transcriptional basis of adipocyte development. Prostaglandins, leukotrienes, and essential fatty acids 73, 31-34.

Rosen, E.D., Hsu, C.H., Wang, X., Sakai, S., Freeman, M.W., Gonzalez, F.J., and Spiegelman, B.M. (2002). C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes & development 16, 22-26.

Rosen, E.D., and MacDougald, O.A. (2006). Adipocyte differentiation from the inside out. Nature reviews Molecular cell biology 7, 885-896.

Rosen, E.D., Walkey, C.J., Puigserver, P., and Spiegelman, B.M. (2000). Transcriptional regulation of adipogenesis. Genes & development 14, 1293-1307.

Ross, S.E., Hemati, N., Longo, K.A., Bennett, C.N., Lucas, P.C., Erickson, R.L., and MacDougald, O.A. (2000). Inhibition of adipogenesis by Wnt signaling. Science (New York, NY) 289, 950-953.

Rothwell, N.J., and Stock, M.J. (1983). Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clinical science (London, England : 1979) 64, 19-23.

Sanchez-Gurmaches, J., Hung, C.M., Sparks, C.A., Tang, Y., Li, H., and Guertin, D.A. (2012). PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell metabolism 16, 348-362.

Saunier, C., Stove, S.I., Popp, B., Gerard, B., Blenski, M., AhMew, N., de Bie, C., Goldenberg, P., Isidor, B., Keren, B., et al. (2016). Expanding the Phenotype Associated with NAA10 Related N-terminal Acetylation Deficiency. Human mutation.

Schopfer, F.J., Lin, Y., Baker, P.R., Cui, T., Garcia-Barrio, M., Zhang, J., Chen, K., Chen, Y.E., and Freeman, B.A. (2005). Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proceedings of the National Academy of Sciences of the United States of America 102, 2340-2345.

Schwartz, M.W., Woods, S.C., Seeley, R.J., Barsh, G.S., Baskin, D.G., and Leibel, R.L. (2003). Is the energy homeostasis system inherently biased toward weight gain? Diabetes 52, 232-238.

Scott, D.C., Monda, J.K., Bennett, E.J., Harper, J.W., and Schulman, B.A. (2011). N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science (New York, NY) 334, 674-678.

Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S., Scime, A., Devarakonda, S., Conroe, H.M., Erdjument-Bromage, H., et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961-967.

Seale, P., Kajimura, S., and Spiegelman, B.M. (2009). Transcriptional control of brown adipocyte development and physiological function--of mice and men. Genes & development 23, 788-797.

Seale, P., Sabourin, L.A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M.A. (2000). Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777-786.

Seo, J.H., Cha, J.H., Park, J.H., Jeong, C.H., Park, Z.Y., Lee, H.S., Oh, S.H., Kang, J.H., Suh, S.W., Kim, K.H., et al. (2010). Arrest defective 1 autoacetylation is a critical step in its ability to stimulate cancer cell proliferation. Cancer research 70, 4422-4432.

Spiegelman, B.M., Hu, E., Kim, J.B., and Brun, R. (1997). PPAR gamma and the control of adipogenesis. Biochimie 79, 111-112.

Spinella-Jaegle, S., Rawadi, G., Kawai, S., Gallea, S., Faucheu, C., Mollat, P., Courtois, B., Bergaud, B., Ramez, V., Blanchet, A.M., et al. (2001). Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. Journal of cell science 114, 2085-2094.

Starheim, K.K., Gevaert, K., and Arnesen, T. (2012). Protein N-terminal acetyltransferases: when the start matters. Trends in biochemical sciences 37, 152-161.

Tang, Q.Q., and Lane, M.D. (2012). Adipogenesis: from stem cell to adipocyte. Annual review of biochemistry 81, 715-736.

Tang, Q.Q., Otto, T.C., and Lane, M.D. (2003). Mitotic clonal expansion: a synchronous process required for adipogenesis. Proceedings of the National Academy of Sciences of the United States of America 100, 44-49.

Tang, Q.Q., Otto, T.C., and Lane, M.D. (2004). Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proceedings of the National Academy of Sciences of the United States of America 101, 9607-9611.

Tang, W., Zeve, D., Suh, J.M., Bosnakovski, D., Kyba, M., Hammer, R.E., Tallquist, M.D., and Graff, J.M. (2008). White fat progenitor cells reside in the adipose vasculature. Science (New York, NY) 322, 583-586.

Tasdelen, I., van Beekum, O., Gorbenko, O., Fleskens, V., van den Broek, N.J., Koppen, A., Hamers, N., Berger, R., Coffer, P.J., Brenkman, A.B., et al. (2013). The serine/threonine phosphatase PPM1B (PP2Cbeta) selectively modulates PPARgamma activity. The Biochemical journal 451, 45-53.

Tateishi, K., Okada, Y., Kallin, E.M., and Zhang, Y. (2009). Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458, 757-761.

Tontonoz, P., Hu, E., and Spiegelman, B.M. (1994). Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147-1156.

Tontonoz, P., and Spiegelman, B.M. (2008). Fat and beyond: the diverse biology of PPARgamma. Annual review of biochemistry 77, 289-312.

Uldry, M., Yang, W., St-Pierre, J., Lin, J., Seale, P., and Spiegelman, B.M. (2006). Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell metabolism 3, 333-341.

Um, S.H., D''Alessio, D., and Thomas, G. (2006). Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell metabolism 3, 393-402.

Um, S.H., Frigerio, F., Watanabe, M., Picard, F., Joaquin, M., Sticker, M., Fumagalli, S., Allegrini, P.R., Kozma, S.C., Auwerx, J., et al. (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200-205.

Vernochet, C., Peres, S.B., Davis, K.E., McDonald, M.E., Qiang, L., Wang, H., Scherer, P.E., and Farmer, S.R. (2009). C/EBPalpha and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor gamma agonists. Molecular and cellular biology 29, 4714-4728.

Wang, J., Obici, S., Morgan, K., Barzilai, N., Feng, Z., and Rossetti, L. (2001). Overfeeding rapidly induces leptin and insulin resistance. Diabetes 50, 2786-2791.

Wang, M., Wise, S.C., Leff, T., and Su, T.Z. (1999). Troglitazone, an antidiabetic agent, inhibits cholesterol biosynthesis through a mechanism independent of peroxisome proliferator-activated receptor-gamma. Diabetes 48, 254-260.

Whiteway, M., and Szostak, J.W. (1985). The ARD1 gene of yeast functions in the switch between the mitotic cell cycle and alternative developmental pathways. Cell 43, 483-492.

Willson, T.M., Brown, P.J., Sternbach, D.D., and Henke, B.R. (2000). The PPARs: from orphan receptors to drug discovery. Journal of medicinal chemistry 43, 527-550.

Wu, J., Bostrom, P., Sparks, L.M., Ye, L., Choi, J.H., Giang, A.H., Khandekar, M., Virtanen, K.A., Nuutila, P., Schaart, G., et al. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366-376.

Wu, Z., Rosen, E.D., Brun, R., Hauser, S., Adelmant, G., Troy, A.E., McKeon, C., Darlington, G.J., and Spiegelman, B.M. (1999). Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Molecular cell 3, 151-158.

Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., et al. (2001). The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature medicine 7, 941-946.

Yi, C.H., Pan, H., Seebacher, J., Jang, I.H., Hyberts, S.G., Heffron, G.J., Vander Heiden, M.G., Yang, R., Li, F., Locasale, J.W., et al. (2011). Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 146, 607-620.

Yin, H., Pasut, A., Soleimani, V.D., Bentzinger, C.F., Antoun, G., Thorn, S., Seale, P., Fernando, P., van Ijcken, W., Grosveld, F., et al. (2013). MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell metabolism 17, 210-224.

Yoon, H., Kim, H.L., Chun, Y.S., Shin, D.H., Lee, K.H., Shin, C.S., Lee, D.Y., Kim, H.H., Lee, Z.H., Ryoo, H.M., et al. (2014). NAA10 controls osteoblast differentiation and bone formation as a feedback regulator of Runx2. Nature communications 5, 5176.

Zehentner, B.K., Leser, U., and Burtscher, H. (2000). BMP-2 and sonic hedgehog have contrary effects on adipocyte-like differentiation of C3H10T1/2 cells. DNA and cell biology 19, 275-281.

Zeng, Y., Liu, C., Dong, B., Li, Y., Jiang, B., Xu, Y., Meng, L., Wu, J., Qu, L., and Shou, C. (2013). Inverse correlation between Naa10p and MMP-9 expression and the combined prognostic value in breast cancer patients. Medical oncology (Northwood, London, England) 30, 562.

Zhang, J., Fu, M., Cui, T., Xiong, C., Xu, K., Zhong, W., Xiao, Y., Floyd, D., Liang, J., Li, E., et al. (2004a). Selective disruption of PPARgamma 2 impairs the development of adipose tissue and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America 101, 10703-10708.

Zhang, J.W., Klemm, D.J., Vinson, C., and Lane, M.D. (2004b). Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis. The Journal of biological chemistry 279, 4471-4478.

Zhu, Y., Qi, C., Korenberg, J.R., Chen, X.N., Noya, D., Rao, M.S., and Reddy, J.K. (1995). Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proceedings of the National Academy of Sciences of the United States of America 92, 7921-7925.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊