(3.231.229.89) 您好!臺灣時間:2019/12/15 20:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:洪曉儀
研究生(外文):Hsiao-Yi Hung
論文名稱:廚房油煙控制設備過濾特性與防制管理策略
論文名稱(外文):Filtration Characteristics of Control Devices and Management Strategy of Cooking Oil Aerosol Emission
指導教授:陳志傑陳志傑引用關係
口試委員:黃盛修林文印鄭福田蕭大智
口試日期:2016-05-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:污染防制設備油煙機最易穿透粒徑收集效能
外文關鍵詞:air pollution control devices (APCDs)range hoodmost penetration sizecollection efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,大氣中細懸浮微粒(PM2.5)已成為各界所關注的重要環境議題,而根據空氣污染物排放清冊(Taiwan Emission Data System, TEDS)8.1版顯示,在臺北市中,住宿/餐飲業的PM2.5排放量約佔總量的37.5 %,因此,為了達成PM2.5減量的目的勢必先對烹煮油煙進行排放控制。目前不管是針對商用或家用的油煙/汙染控制設備(Air pollution control devices, APCDs)或抽油煙機中,並沒有一套管理其過濾效能的法規,因此,本研究的目的希冀能夠藉著實際實驗測試以及理論分析推估的方式,提供未來油煙/污染控制設備「過濾效率」規範的制訂參考以及檢測驗證的方法,進而提供環保單位施行政策,並且達到PM2.5減量的目的。

油煙控制設備的效能曲線應以微粒粒徑作為函數來呈現,本研究為得到油煙控制設備的最易穿透粒徑(收集效率最差的粒徑),需進行微粒穿透率測試。由於油煙微粒之數目濃度以次微米粒徑以下微粒為主,因此作法以定量輸出鹽類微粒產生器(model 8118A-EN, TSI Inc., St. Paul, MN)與油類產生器(model 1081414R, TSI Inc., St. Paul, MN)產生次微米的挑戰氣膠分別作為實驗室和現場採樣的測試微粒,待微粒與空氣混和均勻後進入測試腔中,並利用風機調控測試流率。氣膠濃度、粒徑分布,以微粒電移動度掃瞄分徑器(SMPS, model 3936, TSI Inc.)進行採樣分析,而油煙控制設備上游(Upstream)與下游(Downstream)的微粒濃度相除即可得微粒穿透率。而不論是濾材式油煙控制設備及靜電式油煙控制設備皆有實驗室及現場測試的資料,此外,本研究亦評估市售濾油網的過濾效能,此測試方法除了上述儀器外,並搭配超音波霧化器(model 8700-120, Sonotek Inc., Highland, NY)產生微粒,接著,使微粒通過射源(Am-241),中和微粒帶電分布,也利用氣動粒徑分徑儀(APS, model 3321, TSI Inc.)來量測0.7-5.0 μm的粒徑範圍。

汙染控制設備的初始過濾效率為一粒徑的函數,且在微粒呈波茲曼帶電平衡的情況下,不隨著液態或固態而有所不同。實驗結果顯示,在表面風速2 m/s下,一般市售濾油網僅能有效濾除(aerosol penetration < 10%)粒徑大於2.5 μm以上的油煙微粒,然而,靜電式油煙控制設備及濾材式油煙控制設備對於PM2.5的去除有很好的效果。實驗結果顯示,靜電式油煙控制設備的微粒穿透率隨著流率的上升而上升,而其最易穿透粒徑落在0.2-0.3 μm,此外,當微粒粒徑越小於0.02 μm時,由於越不容易使之帶有電荷,因此越不容易利用庫侖力的作用將其收集,不過,從「質量」的尺度而言,該部分微粒的排放貢獻有限。另一方面,流率不僅影響濾材式油煙控制設的微粒穿透率,其濾材上的帶電量也會對性能造成影響。而不論是實驗室測試或是現場採樣,帶電濾材的最易穿透粒徑一開始為50 nm左右,當濾材浸泡至異丙醇或負載油滴微粒時,纖維上的電荷會逐漸消失,於是濾材的最易穿透粒徑便逐漸回到機械式濾材200-400 nm的範圍。因此,在管制汙染控制設備的過濾性能上,其所提供的微粒粒徑範圍應從20 nm到700 nm才有足夠的代表性,且建議最易穿透粒徑的穿透率不得超過10%。若是要以「總穿透效率」來做為呈現的方式,則只要其測試微粒粒徑之CMD落在最易穿透粒徑附近,且GSD小於1.4,則不論利用總數目、總表面積、總質量所量測的穿透率結果誤差會小於5%。


In recent years, the fine particulate matter (PM2.5) pollution has become a major environmental concern in Taiwan. According to the Taiwan Emission Data System, TEDS 8.1, more than 37.5 % of PM2.5 concentrations were contributed by emissions from both restaurants and accommodations in Taipei city. Therefore, efforts to reduce PM2.5 levels would be impeded if cooking oil emissions are not addressed. However, the use of air pollution control devices (APCDs) is not required in kitchen hood systems nowadays in Taiwan. Accordingly, the main purpose of this study was to develop a feasible filtration test method for evaluating the efficiency of APCDs in kitchen exhaust systems. The results might be helpful for environmental policy implementing and reducing the PM2.5 levels eventually.

To determine the particle penetration as a function of particle size in the range of 0.02~0.7 µm, a salt atomizer (model 8118A-EN, TSI Inc., St. Paul, MN) and an oil generator (model 1081414R, TSI Inc., St. Paul, MN) were used to generate polydisperse sub-micrometer-sized challenge aerosol particles for laboratory and field study, respectively. For laboratory tests, the generated particles were then passed through an aerosol neutralizer (25 mCi, Am241) to neutralize the aerosol particles to the Boltzmann charge equilibrium. Next, the neutralized aerosols were mixed with ambient air to obtain the desired flow rates. A scanning mobility particle sizer (SMPS, model 3936, TSI Inc.) was used to measure the aerosol concentrations and size distributions. Particle number concentration data, obtained upstream and downstream of an APCD, were used to assess the penetration of aerosol particles. In this work, filtration characteristics of filter media and electrostatic precipitators (ESPs) were measured both in the laboratory and field. Moreover, the efficiency curves of commercial grease filters were also evaluated. In this part of test, an aerodynamic particle sizer (APS, model 3321, TSI Inc.) incorporating with an ultrasonic atomizing nozzle (model 8700-120, Sonotek Inc., Highland, NY) was used to measure the aerosol penetration in the size range of 0.7~5 µm.

The APCD’s initial filtration efficiency is a function of the size of the particles, and is not dependent on whether they are solid or liquid. The results showed that the commercial grease filters were effective only at capturing particles with diameter larger than 2.5 µm at the face velocity of about 2 m/s. In contrast, ESPs and filter media tested in the present study were more effective in collecting PM2.5 particles. Experimental results showed that aerosol penetration through the ESP decreased with decreasing air flow rates. The most penetrating particle size (MPPS) of the ESP ranged from 0.2~0.3 µm. Although the collection efficiencies of ESPs decreased significantly for particles less than 20 nm due to the partial charge effect, those particles did not contribute significantly to emission based on mass. On the other hand, aerosol penetration through the filter media depended not only on air flow rates, but also on fiber charges. The data showed the tested filter media had an initial MPPS around 50 nm. When electrostatic charges are removed by dipping the filter in isopropanol or loading with oil particles, aerosol penetration increases substantially and the MPPS increases to 200~400 nm, which is the range expected for filters relying solely on mechanical collection mechanisms. The laboratory and the field tests both showed the same trend. In order to comprehensively regulate the emission of cooking oil aerosols, it is proposed that the aerosol penetration ranging from 20 to 700 nm is a required test for all APCDs, and aerosol penetration of the MPPS should not exceed 10%. Theoretical analysis results showed that using challenge aerosol with count median diameter (CMD) of MMPS and geometric standard deviation (GSD) less than 1.4, the worst efficiency of the ESP or filter could be obtained correctively within 5% error regardless of evaluating based on total number, surface, or mass.


目錄
致謝 I
摘要 II
Abstract IV
圖目錄 IX
表目錄 XI
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 4
第二章 文獻探討 5
2.1油煙微粒分布特性 5
2.2各國油煙控制設備測試方法 8
2.3目前家庭油煙設備參照標準與型態 11
2.4靜電集塵器(Electrostatic Precipitator, ESP)之集塵機制 16
2.5纖維性濾材之過濾機制 19
2.6具有靜電除油裝置之除油機 23
2.7化學排煙櫃捕集效率檢測方法(ASHRAE 110) 24
第三章 研究系統與操作方法 26
3.1家庭式抽油煙機濾油網測試 26
3.2靜電式與濾材式油煙控制設備測試 27
3.2.1靜電式油煙控制設備效率 28
3.2.2濾材式油煙控制設備效率 29
3.3測試微粒粒徑分布對測試結果之影響 29
3.4 微粒負載系統 31
3.5 現場採樣 31
3.5.1餐廳甲-靜電式油煙控制設備 31
3.5.2餐廳乙-濾材式油煙控制設備 32
3.6 管末質量濃度採樣 32
第四章 結果與討論 34
4.1家庭式抽油煙機濾油網效率 34
4.2 靜電式與濾材式油煙控制設備效能曲線 34
4.2.1靜電式油煙控制設備效率 34
4.2.2濾材式油煙控制設備效率 35
4.3測試微粒粒徑分布對測試結果之影響 37
4.4微粒負載對控制設備收集性能的影響 37
4.4.1微粒負載對靜電式油煙控制設備收集性能的影響 37
4.4.2微粒負載對濾材式油煙控制設備收集性能的影響 38
4.5現場採樣 39
4.5.1餐廳A-靜電式油煙控制設備 39
4.5.2餐廳B-濾材式油煙控制設備 40
4.6管末質量濃度採樣 41
第五章 結論與建議 43
參考文獻 47



Abt, E., Suh, H.H., Allen, G., & Koutrakis, P. (2000). Characterization of indoor particle sources: A study conducted in the metropolitan Boston area. Environmental Health Perspectives, 108, 35-44.
Agency, U.S.E.P. (1997). Determination of prticulate mtter eissions from sationary surces.
ANSI/AIHA. (2003). American National Standard-Labortory Ventilation. 58.
ASHRAE. (1995). Method of Testing Performance of Laboratory Fume Hoods.
ASTM. (2005). Standard test method for grease particle capture efficiency of commercial kitchen filters and extractors. In (Edited Editor), Book Standard test method for grease particle capture efficiency of commercial kitchen filters and extractors. ASTM International, City.
Brown, R.C. (1993). Air filtration: an integrated approach to the theory and applications of fibrous filters. Pergamon.
Buonanno, G., Morawska, L., & Stabile, L. (2009). Particle emission factors during cooking activities. Atmospheric Environment, 43, 3235-3242.
Chen, C.-C., & Huang, S.-H. (1998). The Effects of Particle Charge on the Performance of a Filtering Facepiece. American Industrial Hygiene Association Journal, 59, 227-233.
Chiang, T.-A., Wu, P.-F., Wang, L.-F., Lee, H., Lee, C.-H., & Ko, Y.-C. (1997). Mutagenicity and polycyclic aromatic hydrocarbon content of fumes from heated cooking oils produced in Taiwan. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 381, 157-161.
Dennekamp, M., Howarth, S., Dick, C.A., Cherrie, J.W., Donaldson, K., & Seaton, A. (2001). Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occupational and environmental medicine, 58, 511-516.
Deutsch, W. (1922). Bewegung und Ladung der Elektrizitastrager im Zylinderkondensator. Ann Phys, 335-344.
Gao, J., Cao, C.-S., Wang, L.-N., Song, T.-H., Zhou, X., Yang, J., & Zhang, X. (2013). Determination of size-dependent source emission rate of cooking-generated aerosol particles at the oil-heating stage in an experimental kitchen. Aerosol and Air Quality Research, 13, 488-496.
He, C., Morawska, L., Hitchins, J., & Gilbert, D. (2004). Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmospheric Environment, 38, 3405-3415.
He, L.-Y., Hu, M., Huang, X.-F., Yu, B.-D., Zhang, Y.-H., & Liu, D.-Q. (2004). Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmospheric Environment, 38, 6557-6564.
Hinds , W.C. (1999). Properities, Behavior, and Measurement airbone Particles 2nd. Aerosol Technology.
Ko, Y.-C., Cheng, L.S.-C., Lee, C.-H., Huang, J.-J., Huang, M.-S., Kao, E.-L., Wang, H.-Z., & Lin, H.-J. (2000). Chinese Food Cooking and Lung Cancer in Women Nonsmokers. American Journal of Epidemiology, 151, 140-147.
Lee, K.W., & Liu, B.Y.H. (1982). Theoretical Study of Aerosol Filtration by Fibrous Filters. Aerosol Science and Technology, 1, 147-161.
Lee, S.C., Li, W.-M., & Yin Chan, L. (2001). Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong. Science of The Total Environment, 279, 181-193.
Levy, J.I., Dumyahn, T., & Spengler, J.D. (2002). Particulate matter and polycyclic aromatic hydrocarbon concentrations in indoor and outdoor microenvironments in Boston, Massachusetts. J Expo Anal Environ Epidemiol, 12, 104-114.
Li, C.-S., Lin, W.-H., & Jenq, F.-T. (1993). Size distributions of submicrometer aerosols from cooking. Environment International, 19, 147-154.
Livchak, A., Schrock, D., Lehtimaki, M., & Taipale, A. (2003). The facts about mechanical grease filters. ASHRAE, K14-K17.
Morawska, L., He, C., Hitchins, J., Mengersen, K., & Gilbert, D. (2003). Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmospheric Environment, 37, 4195-4203.
See, S.W., & Balasubramanian, R. (2006). Risk assessment of exposure to indoor aerosols associated with Chinese cooking. Environmental Research, 102, 197-204.
Shields, P.G., Xu, G.X., Blot, W.J., Fraumeni, J.F., Trivers, G.E., Pellizzari, E.D., Qu, Y.H., Gao, Y.T., & Harris, C.C. (1995). Mutagens From Heated Chinese and U.S. Cooking Oils. Journal of the National Cancer Institute, 87, 836-841.
Siegmann, K., & Sattler, K. (1996). Aerosol From Hot Cooking Oil, A Possible Health Hazard. Journal of Aerosol Science, 27, 493-494.
Wallace, L.A., Emmerich, S.J., & Howard-Reed, C. (2004). Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environmental science & technology, 38, 2304-2311.
Yeung, L.L., & To, W.M. (2008). Size Distributions of the Aerosols Emitted from Commercial Cooking Processes. Indoor and Built Environment, 17, 220-229.
Zhang, Q., Gangupomu, R.H., Ramirez, D., & Zhu, Y. (2010). Measurement of Ultrafine Particles and Other Air Pollutants Emitted by Cooking Activities. International Journal of Environmental Research and Public Health, 7, 1744-1759.
一般社団法人日本環境測定分析協会&一般財団法人日本規格協会. (2013). JIS Z 8808: 排中濃度測定方法.
吳姿樺, 簡., 蔡春進. (1999). 一個員工餐廳的靜電除油煙機的控制效率.
財團法人台灣產業服務基金會. (2014). 103年度臺北市餐飲業空氣污染物管制及輔導改善計畫. In (Edited Editor), Book 103年度臺北市餐飲業空氣污染物管制及輔導改善計畫, City.
國家質量監督檢驗檢疫總局. (2001). 中華人民共和國國家標準-飲食業油煙排放標準GB-18483.
張俊銘, 翁凌家, 陳建良, & 羅新衡. (2014). 排油煙機能源效率基準訂定及測試方法研究. 臺灣能源期刊.
張淑香. (2006). 具有靜電除油裝置之除油機結構及其控制方法.
許瀞文. (2000). 食用油油煙微粒與多環芳香烴化合物. 國立國立臺灣大學環境衛生研究所.
陳志傑, 黃盛修, 賴永怡, & 黃奕孝. (1996). 氣懸微粒防護濾材防護機制研究. In (Edited Editor), Book 氣懸微粒防護濾材防護機制研究. 工業技術研究院, City.
陳春萬. (1999). 防塵口罩防護效能探討. In (Edited Editor), Book 防塵口罩防護效能探討. 行政院勞工委員會勞工安全衛生研究所, City.
鄒金台, 徐盛源, 黃傳興, 張任宏, 羅新衡, & 李松宏. (2014). 我國抽( 排) 油煙機發展趨勢與性能提升可行性探討. 冷凍空調 & 能源科技, 62-70.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔