跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 05:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡志育
研究生(外文):Chih-Yu Chien
論文名稱:仿生結晶保護層作為覆髓治療生醫材料之研究
論文名稱(外文):Investigation on the biomimetic crystallization layer as pulp capping biomaterial
指導教授:姜昱至
指導教授(外文):Yu-Chih Chiang
口試委員:林俊彬林弘萍
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:口腔生物科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:覆髓治療含奈米鈣介孔矽質泡材仿生結晶牙本質小管牙本質黏著劑體外牙本質薄片模型
外文關鍵詞:pulp cappingnano-calcium encapsulated mesocellular siliceous foamsbiomimetic crystallizationdentinal tubuledentin bonding agentin vitro dentin disc model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
覆髓治療為牙齒深度窩洞之微創治療術式,為能防止牙髓受到外界的刺激而受到損傷,其上的復形物常常會用的光聚合複合樹脂,使缺損的牙冠恢復其型態及維持牙齒功能。然而複合樹脂黏著系統,含有一些能對牙髓細胞造成損害的單體,如TEGDMA、HEMA、BisGMA等,也有機會在治療後通過牙本質小管進入牙髓腔,造成牙髓組織發炎壞死的情形。本研究計畫目的為探討含奈米鈣介孔矽質泡材(CMCF)作為窩洞基底覆髓生醫材料,能在牙本質小管中形成仿生結晶,封閉牙本質小管,達到保護牙髓組織的功能,且期望此材料也能進一步誘導受損部位牙本質母細胞分化為牙本質組織,進一步增加覆髓治療的成功率。
本研究分為三部分,第一部分為材料性質與牙本質小管內結晶形成探討,透過牙本質模型以掃描式電子顯微鏡,分析小管結晶/牙本質黏著劑/生醫材料之交互作用機轉,並以紫外光-可見光光譜分析儀,及高效液相層析儀分析牙本質黏著劑與其中單體對於受含奈米鈣介孔矽質泡材處理後的牙本質穿透能力的影響。第二部分為體外細胞相容性測試以及體外深度窩洞模型,首先確認含奈米鈣介孔矽質泡材做為生醫材料應具備良好之細胞相容性,而後以牙本質薄片模擬窩洞覆髓治療時,透過本材料形成仿生結晶封閉牙本質小管,保護牙髓細胞免受複合樹脂及牙本質黏著劑內的單體所損傷。第三部分為材料對牙髓細胞再礦化能力的影響。
實驗結果顯示,生醫材料含奈米鈣介孔矽質泡材,與30%磷酸作用後,透過掃描式電子顯微鏡觀察,能在牙本質小管內形成與牙齒結構類似之磷酸二氫鈣結晶。在生物相容性測試方面,顯示對細胞無明顯毒性,且低於牙本質黏著劑對細胞造成的毒性;透過牙本質薄片模擬臨床深度窩洞覆髓治療,含奈米鈣介孔矽質泡材可藉由形成仿生結晶阻擋複合樹脂及牙本質黏著劑中毒性單體影響牙髓細胞。為了進一步了解含奈米鈣介孔矽質泡材誘導細胞再礦化能力,透過鹼性磷酸酶定性、定量試驗以及DSPP、DMP-1相關蛋白表現量分析,也發現本材料能誘導細胞分泌較多鹼性磷酸酶以及牙本質分化與礦化相關蛋白,推斷其具誘導細胞再礦化之能力。
綜合以上結論,顯示本次實驗研發之含奈米鈣介孔矽質泡材作為生醫材料,用於臨床深度窩洞間接覆髓治療時,具備良好生物相容性,形成仿生結晶保護層,減少牙本質黏著劑滲透,保護牙髓組織以及促進牙髓組織再礦化,在臨床應用上有相當潛力。

Pulp capping is applied to a deep tooth cavity for keeping the pulp vitality. The following light cured composite resin is always applied to recovery the original morphology and chewing function. However, it containing toxic monomers may permeate through dentinal tubules to cause pulp damage. The purpose of this research project is to develop nano-calcium encapsulated mesocellular siliceous foams (denoted as nCa-MCFs) as a capping biomaterial that can form biomimetic crystallization in dentinal tubule when nCa-MCFs works with phosphoric acid (denoted as nCa-MCFs-HP). The biomimetic crystal layer would serve as a protective barrier protect pulp tissues from the toxic monomer of dentin bonding agents, and further induces the differentiation of odontoblast.
This study carries out three parts—Part Ι: To investigate the properties of nCa-MCFs-HP material and the formation of biomimetic crystallization in dentin tubule. We would analyze the interaction of tubule crystallization and biomaterials by using scanning electron microscope. The elution of dentin bonding agents and monomers through 0.2 mm dentin disc after nCa-MCFs-HP treatment would analyzed by UV-Vis spectroscopy and HPLC. Part ΙΙ: To evaluate the biocompatibility of nCa-MCFs-HP biomaterials, and to establish the in vitro deep dentin disc model. Part ΙΙΙ: To evaluate the pulp cell mineralization after nCa-MCFs-HP treatment.
The results revealed that the nCa-MCFs-HP can form calcium phosphates crystallization in tubule. The biocompatibility of nCa-MCFs-HP was also confirmed by WST-1 and LDH test, which indicates no significant cytotoxicity, and lower cytotoxicity than the group of dentin bonding agents. The simulated deep cavity treating with nCa-MCFs-HP material can form a biomimetic crystalline barrier which may protect pulp cell from toxicity monomers released from composite resins and dentin bonding agents. ALP staining assay, ALP quantitative assay, and mineralization-related protein – DMP-1, DSPP expression further indicated the nCa-MCFs-HP treated dentin has the great help of the induction of pulp cell mineralization.
Based on the given situation, we concluded that the nCa-MCFs-HP biomaterial has good biocompatibility, and the forming biomimetic crystallization protect layer could reduce the toxic monomers permeation, protect pulp tissues, and promote mineralization as a pulp capping material.


摘要 i
Abstract iii
目錄 v
第一章 文獻回顧 1
1.1保存牙髓之重要性 1
1.1.1牙髓組織之發育與構造 1
1.1.2 保留牙髓於臨床治療的意義 2
1.2 覆髓治療 2
1.3現今常用覆髓治療材料 3
1.3.1氫氧化鈣 (Calcium hydroxide) 3
1.3.2三氧化礦物(Mineral Trioxide Aggregate ,MTA) 4
1.3.3 Biodentine TM 4
1.4牙本質黏著劑之退變與生物毒性 5
1.5牙本質小管 6
1.6中孔洞矽質生醫材料與仿生結晶 7
1.6.1中孔洞材料的發展 7
1.6.2本實驗室研究中孔洞材料用於牙本質疾病之沿革 7
1.7牙髓組織再礦化 8
1.7.1牙本質母細胞分化 8
1.7.2Dentin sialophosphoprotein (DSPP) 8
1.7.3 Dentin Matrix Protein 1 (DMP1) 9
第二章 實驗動機與目的 10
第三章 材料與方法 11
3.1 實驗材料之製備與性質分析 11
3.1.1含奈米鈣介孔矽質泡材(CMCF)之合成與性質最佳化 11
3.1.2 X射線繞射分析(X-Ray Diffractometer, XRD) 12
3.2 材料在牙本質小管結晶與牙本質黏著劑交互作用探討 12
3.2.1 牙本質試片製作 12
3.2.2掃描式電子顯微鏡觀察 13
3.2.3 穿透式電子顯微鏡觀察 13
3.2.4 牙本質黏著劑內單體之釋放 14
3.2.4.1 紫外光-可見光分光光度分析儀 (UV-visible Spectroscopy )檢測 牙本質黏著劑釋出 14
3.2.4.2 高效液相層析儀(HPLC)檢測HEMA之釋放 15
3.3 體外生物相容性測試暨模擬深度窩洞之牙本質模型探討 15
3.3.1 材料萃取液製備 15
3.3.2 牙本質黏著劑萃取液製備 16
3.3.3人類牙髓細胞之初級培養 16
3.3.4 WST-1 細胞存活率測試 (WST-1 cell viability assay) 17
3.3.5 LDH細胞毒性測試 (Lactate Dehydrogenase Cytotoxicity Assay) 18
3.3.6牙本質薄片模型之細胞毒性檢測 19
3.4 體外細胞礦化行為分析 21
3.4.1鹼性磷酸酶定性染色分析 (ALP Staining Assay) 21
3.4.2 鹼性磷酸酶定量 (ALP Activity Quantitative Assay) 22
3.4.3 礦化相關蛋白表現量分析 24
第四章 實驗結果 29
4.1 材料性質分析 29
4.1.1 實驗材料之X射線繞射分析 29
4.2 材料在牙本質小管結晶與牙本質黏著劑交互作用探討 29
4.2.1 掃描式電子顯微鏡觀察 29
4.2.2 穿透式電子顯微鏡觀察 30
4.3 牙本質黏著劑內單體之釋放 30
4.3.1紫外光-可見光分光光度分析儀 (UV-visible Spectroscopy )檢測牙本質黏著劑釋出 30
4.3.2高效液相層析儀(HPLC)檢測HEMA之釋放 31
4.4 體外生物相容性測試暨深度窩洞牙本質模型探討 31
4.4.1材料萃取液與牙本質黏著劑萃取液之 WST-1 細胞存活率測試 31
4.4.2材料萃取液與牙本質黏著劑萃取液之LDH細胞毒性測試 31
4.4.3牙本質薄片模型之LDH細胞毒性檢測 32
4.5體外細胞礦化行為分析 32
4.5.1 材料萃取液與牙本質黏著劑萃取液之鹼性磷酸酶定性染色分析 32
4.5.2 材料萃取液與牙本質黏著劑萃取液之鹼性磷酸酶定量 33
4.5.3 材料萃取液對牙髓細胞礦化相關蛋白表現量分析 33
4.5.4 牙本質薄片模型之鹼性磷酸酶定量 33
4.5.5 牙本質薄片模型對牙髓細胞礦化相關蛋白表現量分析 33
4.6統計方法 34
第五章 討論 35
5.1 CMCF-HP鈣磷莫耳比1:1.5的選擇 35
5.2 濃度30%磷酸製劑選擇 35
5.3 CMCF-HP在牙本質小管內形成結晶之討論 35
5.4 UV-Vis與HPLC檢測CMCF對於減少牙本質黏著劑與其中HEMA滲透之討論 36
5.5牙本質黏著劑萃取液與CMCF-HP材料萃取液之生物相容性探討 36
5.6 牙本質薄片模型之生物相容性的意義 37
5.7牙本質黏著劑FL-Bond ΙΙ 之選擇與細胞毒性 37
5.8 CMCF-HP材料對細胞礦化行為的影響 38
第六章 結論 40
第七章 未來研究方向 41
參考資料 42

圖3-1 …………………………………………………………………………………11
圖3-2………………………………………………………………………………….12
圖3-3 …………………………………………………………………………………14
圖3-4………………………………………………………………………………….17
圖3-5………………………………………………………………………………….18

第四章
圖4-1………………………………………………………………………………….48
圖4-2………………………………………………………………………………….49
圖4-3………………………………………………………………………………….50
圖4-4………………………………………………………………………………….51
圖4-5………………………………………………………………………………….52
圖4-6………………………………………………………………………………….53
圖4-7………………………………………………………………………………….54
圖4-8………………………………………………………………………………….55
圖4-9………………………………………………………………………………….56
圖4-10…………………………………………………………………………………57
圖4-11…………………………………………………………………………………58
圖4-12…………………………………………………………………………………59
圖4-13…………………………………………………………………………………60
圖4-14…………………………………………………………………………………61
圖4-15…………………………………………………………………………………62
圖4-16…………………………………………………………………………………63
圖4-17……………………………………………………………………………….64
圖4-18……………………………………………………………………………….65
圖4-19……………………………………………………………………………….66
表4-1………………………………………………………………………………….67
表4-2………………………………………………………………………………….67
表4-3………………………………………………………………………………….67


1.Hargreaves, K.M., H.E. Goodis, and F.R. Tay, Selzer and Bender''s dental pulp. Quintessence Publishing Company, 2002.
2.Sloan, A.J. and A.J. Smith, Stimulation of the dentine-pulp complex of rat incisor teeth by transforming growth factor-beta isoforms 1-3 in vitro. Arch Oral Biol, 1999. 44(2): p. 149-56.
3.Sveen, O.B. and R.R. Hawes, Differentiation of new odontoblasts and dentine bridge formation in rat molar teeth after tooth grinding. Arch Oral Biol, 1968. 13(12): p. 1399-409.
4.Hannahan, J.P. and P.D. Eleazer, Comparison of success of implants versus endodontically treated teeth. J Endod, 2008. 34(11): p. 1302-5.
5.Caplan, D.J., et al., Root canal filled versus non-root canal filled teeth: a retrospective comparison of survival times. J Public Health Dent, 2005. 65(2): p. 90-6.
6.Randow, K. and P.O. Glantz, On cantilever loading of vital and non-vital teeth. An experimental clinical study. Acta Odontol Scand, 1986. 44(5): p. 271-7.
7.Zhang, W. and P.C. Yelick, Vital pulp therapy-current progress of dental pulp regeneration and revascularization. Int J Dent, 2010. 2010: p. 856087.
8.Plotino, G., et al., Nonvital tooth bleaching: a review of the literature and clinical procedures. J Endod, 2008. 34(4): p. 394-407.
9.Cvek, M., Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol, 1992. 8(2): p. 45-55.
10.Stanley, H.R., Pulp capping: conserving the dental pulp--can it be done? Is it worth it? Oral Surg Oral Med Oral Pathol, 1989. 68(5): p. 628-39.
11.Cvek, M., et al., Pulp reactions to exposure after experimental crown fractures or grinding in adult monkeys. J Endod, 1982. 8(9): p. 391-7.
12.Trope, M., Regenerative potential of dental pulp. J Endod, 2008. 34(7 Suppl): p. S13-7.
13.Farhad, A. and Z. Mohammadi, Calcium hydroxide: a review. Int Dent J, 2005. 55(5): p. 293-301.
14.Haapasalo, L.S.W.S.a.M., Rationale and efficacy of root canal medicaments and root filling materials with emphasis on treatment outcome. Endodontic Topics, 2002.
15.Rehman, K., et al., Calcium ion diffusion from calcium hydroxide-containing materials in endodontically-treated teeth: an in vitro study. Int Endod J, 1996. 29(4): p. 271-9.
16.Mizuno, M. and Y. Banzai, Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin. Int Endod J, 2008. 41(11): p. 933-8.
17.Rashid, F., et al., The effect of extracellular calcium ion on gene expression of bone-related proteins in human pulp cells. J Endod, 2003. 29(2): p. 104-7.
18.Prosser, H.J., D.M. Groffman, and A.D. Wilson, The effect of composition on the erosion properties of calcium hydroxide cements. J Dent Res, 1982. 61(12): p. 1431-5.
19.Hrsted-Bindslev P, L.H., Treatment outcome of vital pulp treatment. Endodontic Topics, 2002.
20.Cox, C.F., et al., Pulp capping of dental pulp mechanically exposed to oral microflora: a 1-2 year observation of wound healing in the monkey. J Oral Pathol, 1985. 14(2): p. 156-68.
21.Torabinejad, M., et al., Dye leakage of four root end filling materials: effects of blood contamination. J Endod, 1994. 20(4): p. 159-63.
22.Asgary, S., et al., Chemical differences between white and gray mineral trioxide aggregate. J Endod, 2005. 31(2): p. 101-3.
23.Torabinejad, M. and T.R. Pitt Ford, Root end filling materials: a review. Endod Dent Traumatol, 1996. 12(4): p. 161-78.
24.Simon, S., et al., The use of mineral trioxide aggregate in one-visit apexification treatment: a prospective study. Int Endod J, 2007. 40(3): p. 186-97.
25.Felippe, W.T., M.C. Felippe, and M.J. Rocha, The effect of mineral trioxide aggregate on the apexification and periapical healing of teeth with incomplete root formation. Int Endod J, 2006. 39(1): p. 2-9.
26.Camilleri, J., Hydration mechanisms of mineral trioxide aggregate. Int Endod J, 2007. 40(6): p. 462-70.
27.Daltoe, M.O., et al., Expression of Mineralization Markers during Pulp Response to Biodentine and Mineral Trioxide Aggregate. J Endod, 2016. 42(4): p. 596-603.
28.Torabinejad, M., T.F. Watson, and T.R. Pitt Ford, Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod, 1993. 19(12): p. 591-5.
29.Lee, S.J., M. Monsef, and M. Torabinejad, Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod, 1993. 19(11): p. 541-4.
30.Fischer, E.J., D.E. Arens, and C.H. Miller, Bacterial leakage of mineral trioxide aggregate as compared with zinc-free amalgam, intermediate restorative material, and Super-EBA as a root-end filling material. J Endod, 1998. 24(3): p. 176-9.
31.Torabinejad, M., et al., Physical and chemical properties of a new root-end filling material. J Endod, 1995. 21(7): p. 349-53.
32.Rajasekharan, S., et al., Biodentine material characteristics and clinical applications: a review of the literature. Eur Arch Paediatr Dent, 2014. 15(3): p. 147-58.
33.Gandolfi, M., et al., In Vitro Screening of the Apatite-Forming Ability, Biointeractivity and Physical Properties of a Tricalcium Silicate Material for Endodontics and Restorative Dentistry. Dentistry Journal, 2013. 1(4): p. 41.
34.Laurent, P., J. Camps, and I. About, Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J, 2012. 45(5): p. 439-48.
35.D''Souza, R.N., et al., TGF-beta1 is essential for the homeostasis of the dentin-pulp complex. Eur J Oral Sci, 1998. 106 Suppl 1: p. 185-91.
36.Mullen, A.C., et al., Master transcription factors determine cell-type-specific responses to TGF-beta signaling. Cell, 2011. 147(3): p. 565-76.
37.Zanini, M., et al., Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J Endod, 2012. 38(9): p. 1220-6.
38.Sawyer, A.N., et al., Effects of calcium silicate-based materials on the flexural properties of dentin. J Endod, 2012. 38(5): p. 680-3.
39.Atmeh, A.R., et al., Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res, 2012. 91(5): p. 454-9.
40.Gerzina, T.M. and W.R. Hume, Diffusion of monomers from bonding resin-resin composite combinations through dentine in vitro. J Dent, 1996. 24(1-2): p. 125-8.
41.Atalayin, C., et al., The protective effect of resveratrol against dentin bonding agents-induced cytotoxicity. Dent Mater J, 2015.
42.Krifka, S., et al., A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials, 2013. 34(19): p. 4555-63.
43.Ginzkey, C., et al., Assessment of HEMA and TEGDMA induced DNA damage by multiple genotoxicological endpoints in human lymphocytes. Dent Mater, 2015. 31(8): p. 865-76.
44.Pashley, D.H., Dynamics of the pulpo-dentin complex. Crit Rev Oral Biol Med, 1996. 7(2): p. 104-33.
45.Chiola, V., J.E. Ritsko, and C.D. Vanderpool, Process for producing low-bulk density silica. Publication No. US 3556725 A, 1971.
46.Yanagisawa, T., et al., The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bulletin of the Chemical Society of Japan, 1990: p. 988-992.
47.Kresge, C.T., et al., Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature, 1992. 359(6397): p. 710-712.
48.Beck, J.S., et al., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. Journal of the American Chemical Society, 1992: p. 10834-10843.
49.Qin, C., R. D''Souza, and J.Q. Feng, Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phosphate homeostasis. J Dent Res, 2007. 86(12): p. 1134-41.
50.Suzuki, S., et al., Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol, 2009. 28(4): p. 221-9.
51.Butler, W.T. and H. Ritchie, The nature and functional significance of dentin extracellular matrix proteins. Int J Dev Biol, 1995. 39(1): p. 169-79.
52.Dechichi, P., et al., A model of the early mineralization process of mantle dentin. Micron, 2007. 38(5): p. 486-91.
53.Begue-Kirn, C., et al., Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sci, 1998. 106(5): p. 963-70.
54.MacDougall, M., et al., Developmental regulation of dentin sialophosphoprotein during ameloblast differentiation: a potential enamel matrix nucleator. Connect Tissue Res, 1998. 39(1-3): p. 25-37; discussion 63-7.
55.MacDougall, M., et al., Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem, 1997. 272(2): p. 835-42.
56.Butler, W.T., et al., Isolation, characterization and immunolocalization of a 53-kDal dentin sialoprotein (DSP). Matrix, 1992. 12(5): p. 343-51.
57.McKnight, D.A., et al., A comprehensive analysis of normal variation and disease-causing mutations in the human DSPP gene. Hum Mutat, 2008. 29(12): p. 1392-404.
58.He, G., et al., Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization. J Biol Chem, 2005. 280(39): p. 33109-14.
59.Milan, A.M., et al., Adsorption and interactions of dentine phosphoprotein with hydroxyapatite and collagen. Eur J Oral Sci, 2006. 114(3): p. 223-31.
60.George, A., et al., Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J Biol Chem, 1993. 268(17): p. 12624-30.
61.Ogbureke, K.U. and L.W. Fisher, Expression of SIBLINGs and their partner MMPs in salivary glands. J Dent Res, 2004. 83(9): p. 664-70.
62.Ogbureke, K.U. and L.W. Fisher, Renal expression of SIBLING proteins and their partner matrix metalloproteinases (MMPs). Kidney Int, 2005. 68(1): p. 155-66.
63.Qin, C., et al., Evidence for the proteolytic processing of dentin matrix protein 1. Identification and characterization of processed fragments and cleavage sites. J Biol Chem, 2003. 278(36): p. 34700-8.
64.Lempel, E., et al., Degree of Conversion and BisGMA, TEGDMA, UDMA Elution from Flowable Bulk Fill Composites. Int J Mol Sci, 2016. 17(5).
65.Alshali, R.Z., et al., Analysis of long-term monomer elution from bulk-fill and conventional resin-composites using high performance liquid chromatography. Dent Mater, 2015. 31(12): p. 1587-98.
66.Omurlu, H., et al., Investigation of eluted monomers from resin-based root canal sealer by high-performance liquid chromatography analysis. Eur J Dent, 2016. 10(1): p. 92-6.
67.Wang, M.C., et al., Lipopolysaccharide induces the migration of human dental pulp cells by up-regulating miR-146a. J Endod, 2012. 38(12): p. 1598-603.
68.Ngamwongsatit, P., et al., WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J Microbiol Methods, 2008. 73(3): p. 211-5.
69.Nachlas, M.M., et al., The determination of lactic dehydrogenase with a tetrazolium salt. Anal Biochem, 1960. 1: p. 317-26.
70.Decker, T. and M.L. Lohmann-Matthes, A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods, 1988. 115(1): p. 61-9.
71.Allen, M.J. and N. Rushton, Use of the CytoTox 96™ Assay in routine biocompatibility testing in vitro. Promega Notes 1994: p. 7-10.
72.Sabokbar, A., et al., A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro. Bone Miner, 1994. 27(1): p. 57-67.
73.Smith, P.K., et al., Measurement of protein using bicinchoninic acid. Anal Biochem, 1985. 150(1): p. 76-85.
74.Wiechelman, K.J., R.D. Braun, and J.D. Fitzpatrick, Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem, 1988. 175(1): p. 231-7.
75.Kessler, R.J. and D.D. Fanestil, Interference by lipids in the determination of protein using bicinchoninic acid. Anal Biochem, 1986. 159(1): p. 138-42.
76.Ishikawa, K., E.D. Eanes, and K. Asaoka, Effect of calcium ions on hydroxyapatite formation from the hydrolysis of anhydrous dicalcium phosphate. Dent Mater J, 1994. 13(2): p. 182-9.
77.Gurpinar, A., et al., Cytotoxicity of Two-step Self-etching Primer/Adhesives on L929 Cells. Journal of Bioactive and Compatible Polymers, 2006.
78.Pourabbas, R., et al., In vitro assessment of cytotoxicity of giomer on human gingival fibroblasts. African Journal of Biotechnology, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top