跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 18:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃智煌
研究生(外文):Chih-Huang Huang
論文名稱:運用函數型資料分群方法與類神經網絡於演唱會票卷銷售預測之研究
論文名稱(外文):Ticket Sales Prediction of Entertainment Show Using Functional Data Clustering and Artificial Neural Network
指導教授:楊朝龍楊朝龍引用關係
指導教授(外文):Chao-Lung Yang
口試委員:楊朝龍
口試委員(外文):Chao-Lung Yang
口試日期:2016-06-30
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:52
中文關鍵詞:售票系統群集分析類神經網路
外文關鍵詞:Ticketing SystemCluster AnalysisArtificial Neural Network
相關次數:
  • 被引用被引用:1
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
演唱會票卷的銷售狀態,反應演唱會的熱門程度與受歡迎程度,也關係著售票廠商的營收與利潤,因此售票廠商透過各種促銷與宣傳均希望使演唱會票卷能夠銷售完畢,以期達到最大收益。但售票廠商若想得知該場演唱會的票卷是否能夠販售完畢,除了靠過往經驗主觀判斷是否能夠有其他方法能夠提供更為科學與精確的預測?為了瞭解票卷系統背後的銷售情形,本研究以某售票系統的票卷銷售資料做為研究基礎,使用函數型資料分析與群集分析,並透過類神經網路模型的應用,進行銷售預測模型的建構。首先,將各演唱會之票價進行資料的劃分,使演唱會票卷的銷售預測能依據不同的票價給予不同的預測分析結果。接著使用函數型資料分析方法將票卷銷售資料進行函數化,使原本離散間斷的資料轉換為平滑之函數型資料,並利用B-spline 為轉換基底,以函數資料代表各演唱會之銷售狀態。本研究提出以函數型分群演算法將具有相同銷售狀態的演唱會場次進行群集分析,最後將具有相同特徵之演唱會,透過類神經網絡模型進行銷售預測值計算(Artificial Neural Network with Functional Data Clustering, ANN_FDC),利用前期銷售時間點之銷售資料以預測在後期銷售時間點之票券銷售狀況,期望透過演唱會銷售資料的分析,瞭解該演唱會是否能夠達到完售狀態,以及距離完售還有多少百分比的差距。本研究以2010 至2011 年間於台北地區經常舉辦流行音樂演唱會之展演場地所舉辦演唱會之票券銷售記錄進行研究的實證,從實驗結果可發現本研究所提出之ANN_FDC 方法在預測結果及運算效能上比傳統ANN 有較佳的結果。本研究期望票券的銷售預測能有助於售票廠商於銷售前期得知銷售狀態之預測,以進行銷售策略的修訂與促銷活動投入的參考與依據。
The sales performance of an entertainment show or concert tickets not only reflect profit of the business but also represents the popularity of the event. Predicting or forecasting the ticket sales performance before or during the ticket on sale is very important for the organization which hosts entertainment show event. In this research, a ticket sales prediction model was developed to predict the percentage of box office (ticket sales) of each price ranges based on the historical sales performance. In this research, a method called “Artificial Neural Network with Functional Data Clustering” (ANN_FDC) was proposed. Basically, the functional data clustering method is utilized to cluster show events by their ticket sale trajectory. Based on the clustering result, Artificial Neural Network (ANN) was developed for each ticket price range to predict the sales of the box office in terms of the percentage of ticket sold. This method is applied by using the first half of sale records to train the model for predicting the box office in the second half of sale periods. In this research, the 2010~2011 ticket sales data of Taipei area which usually exhibit pop music concerts was used as the testbed for evaluating the prediction model. The experimental results show the ANN_FDC can provide the better prediction and computational efficiency. This result can be further used for the study of the ticket marketing and sales promotion strategies.
摘要 i
ABSTRACT ii
Chapter 1 : INTRODUCTION 1
1.1. Background 1
1.2. Research objective 2
1.3. Research framework 6
Chapter 2 LITERATURE REVIEW 7
2.1. Ticketing System 7
2.2. The introduction of functional data analysis 8
2.2.1. The fundamental of the theory 9
2.2.2. The application of functional data analysis 10
2.3. Cluster analysis 13
2.3.1. Hierarchical clustering 13
2.3.2. Determination of clusters 15
2.4. Artificial neural network(ANN) 15
Chapter 3 METHODOLOGY 18
3.1. Research structure 18
3.2. Mathematical formulation 19
3.2.1. Data normalization 21
3.3. Functional data conversion 23
3.3.1. B-spline 23
3.3.2. Smoothing of functional data 24
3.4. Sales Predict model 25
3.4.1. Clustering methods 26
3.4.2. ANN methods 28
3.5. K-fold cross-validation and discussion of errors 30
Chapter 4 EXPERIMENT 32
4.1. Data description 32
4.1.1. Data processing 33
4.2. Prediction of clustering methods 33
4.2.1. Cluster K determination 34
4.2.2. Hierarchical clustering model 36
4.2.3. Functional data clustering model 39
4.3. Prediction of ANN methods 41
4.3.1. Parameter determination 41
4.3.2. ANN training on no clustering dataset 43
4.3.3. ANN training on clustering dataset 43
4.4. Model determination 44
Chapter 5 CONCLUSION 46
5.1. Conclusion and discussion 46
5.2. Further research 47
REFERENCE 49
APPENDIX 52
A. P-value table of Shapiro-Wilk Normality test 52
Abdul Hamid, N., Al A'zhim, M. F., & Yap, M. L. (2012, 10-12 Dec. 2012). e-Ticketing system for football events in Malaysia. Paper presented at the Internet Technology And Secured Transactions, 2012 International Conference for.
Almeida, C., Baugh, C. M., Lacey, C. G., Frenk, C. S., Granato, G. L., Silva, L., & Bressan, A. (2010). Modelling the dusty universe - I. Introducing the artificial neural network and first applications to luminosity and colour distributions. Monthly Notices of the Royal Astronomical Society, 402(1), 544-564. doi: 10.1111/j.1365-2966.2009.15920.x
Anastasladis, A. D., Magoulas, G. D., & Vrahatis, M. N. (2005). New globally convergent training scheme based on the resilient propagation algorithm. Neurocomputing, 64, 253-270. doi: 10.1016/j.neucom.2004.11.016
Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3-31. doi: 10.1016/s0167-7012(00)00201-3
Burfield, R., Neumann, C., & Saunders, C. P. (2015). Review and application of functional data analysis to chemical data-The example of the comparison, classification, and database search of forensic ink chromatograms. Chemometrics and Intelligent Laboratory Systems, 149, 97-106. doi: 10.1016/j.chemolab.2015.07.006
Chandra, D. G., Prakash, R., & Lamdharia, S. (2013, 27-29 Sept. 2013). Mobile Ticketing System for Automatic Fare Collection Model for Public Transport. Paper presented at the Computational Intelligence and Communication Networks (CICN), 2013 5th International Conference on.
Doucoure, B., Agbossou, K., & Cardenas, A. (2016). Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renewable Energy, 92, 202-211. doi: 10.1016/j.renene.2016.02.003
Ferreira, L., & Hitchcock, D. B. (2009). A Comparison of Hierarchical Methods for Clustering Functional Data. doi: 10.1080/03610910903168603
Gellar, J. E., Colantuoni, E., Needham, D. M., & Crainiceanu, C. M. (2015). Cox regression models with functional covariates for survival data. Statistical Modelling, 15(3), 256-278. doi: 10.1177/1471082x14565526
Ghosh, S., Chatterjee, R., & Shanker, P. (2016). Estimation of ash, moisture content and detection of coal lithofacies from well logs using regression and artificial neural network modelling. Fuel, 177, 279-287. doi: 10.1016/j.fuel.2016.03.001
Goldstein, B. A., Chang, T. I., & Winkelmayer, W. C. (2015). Classifying individuals based on a densely captured sequence of vital signs: An example using repeated blood pressure measurements during hemodialysis treatment. Journal of Biomedical Informatics, 57, 219-224. doi: 10.1016/j.jbi.2015.08.010
Gubian, M., Torreira, F., & Boves, L. (2015). Using Functional Data Analysis for investigating multidimensional dynamic phonetic contrasts. Journal of Phonetics, 49, 16-40. doi: 10.1016/j.wocn.2014.10.001
Gunther, F., & Fritsch, S. (2010). neuralnet: Training of Neural Networks. R Journal, 2(1), 30-38.
Hamzaoui, Y. E., & Perez, J. A. H. (2011, Nov. 26 2011-Dec. 4 2011). Application of Artificial Neural Networks to Predict the Selling Price in the Real Estate Valuation Process. Paper presented at the Artificial Intelligence (MICAI), 2011 10th Mexican International Conference on.
Hendrie, G. A., Ullah, S., Scott, J. A., Gray, J., Berry, N., Booth, S., . . . Coveney, J. (2015). Past and projected trends of body mass index and weight status in South Australia: 2003 to 2019. Australian and New Zealand Journal of Public Health, 39(6), 536-543. doi: 10.1111/1753-6405.12442
Horvath, L., & Rice, G. (2015). An introduction to functional data analysis and a principal component approach for testing the equality of mean curvesf. Revista Matematica Complutense, 28(3), 505-548. doi: 10.1007/s13163-015-0169-7
Kamalesh, V. N., Ravindra, V., Bomble, P. P., Pavan, M., Chandan, B. K., & Srivatsa, S. K. (2011, 27-29 Dec. 2011). Virtual ticketing system. Paper presented at the e-Education, Entertainment and e-Management (ICEEE), 2011 International Conference on.
Kraus, D. (2015). Components and completion of partially observed functional data. Journal of the Royal Statistical Society Series B-Statistical Methodology, 77(4), 777-801. doi: 10.1111/rssb.12087
Lillestl, J., & Ollmar, F. (2003). Functional Data Analysis: Introduction and Applications to Financial Electricity Contracts.
Ling, N. X., Liang, L. L., & Vieu, P. (2015). Nonparametric regression estimation for functional stationary ergodic data with missing at random. Journal of Statistical Planning and Inference, 162, 75-87. doi: 10.1016/j.jspi.2015.02.001
Ma, S. J. (2016). Estimation and inference in functional single-index models. Annals of the Institute of Statistical Mathematics, 68(1), 181-208. doi: 10.1007/s10463-014-0488-3
McLean, M. W., Hooker, G., & Ruppert, D. (2015). Restricted likelihood ratio tests for linearity in scalar-on-function regression. Statistics and Computing, 25(5), 997-1008. doi: 10.1007/s11222-014-9473-1
Meyer, M. J., Coull, B. A., Versace, F., Cinciripini, P., & Morris, J. S. (2015). Bayesian Function-on-Function Regression for Multilevel Functional Data. Biometrics, 71(3), 563-574. doi: 10.1111/biom.12299
P.SIBI, S. A. J., P.SIDDARTH. (2013). ANALYSIS OF DIFFERENT ACTIVATION FUNCTIONS
USING BACK PROPAGATION NEURAL NETWORKS. Journal of Theoretical and Applied Information Technology.
Paggi, H., & Robledo, F. (2014, 13-15 Sept. 2014). A Neural Networks Based Model for the Prediction of the Bottled Propane Gas Sales. Paper presented at the Mathematics and Computers in Sciences and in Industry (MCSI), 2014 International Conference on.
Ramsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis (2nd ed.): Springer.
Riedmiller, M., Braun, H., & Ieee. (1993). A DIRECT ADAPTIVE METHOD FOR FASTER BACKPROPAGATION LEARNING - THE RPROP ALGORITHM. New York: I E E E.
Ruliandi, D. (2015, July 30 2015-Aug. 1 2015). Geothermal power plant system performance prediction using artificial neural networks. Paper presented at the Technologies for Sustainability (SusTech), 2015 IEEE Conference on.
Salazar, E., Giraldo, R., & Porcu, E. (2015). Spatial prediction for infinite-dimensional compositional data. Stochastic Environmental Research and Risk Assessment, 29(7), 1737-1749. doi: 10.1007/s00477-014-1010-4
Salvatore, S., Bramness, J. G., Reid, M. J., Thomas, K. V., Harman, C., & Roislien, J. (2015). Wastewater-Based Epidemiology of Stimulant Drugs: Functional Data Analysis Compared to Traditional Statistical Methods. Plos One, 10(9), 14. doi: 10.1371/journal.pone.0138669
Scarpa, B. (2015). Bayesian semiparametric customer base segmentation of mobile phone users based on longitudinal traffic data. Applied Stochastic Models in Business and Industry, 31(5), 721-731. doi: 10.1002/asmb.2085
Shao, Y. E. (2013). Prediction of Currency Volume Issued in Taiwan Using a Hybrid Artificial Neural Network and Multiple Regression Approach. Mathematical Problems in Engineering, 9. doi: 10.1155/2013/676742
Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining.
Wang, H. G., & Yao, M. (2015). Fault detection of batch processes based on multivariate functional kernel principal component analysis. Chemometrics and Intelligent Laboratory Systems, 149, 78-89. doi: 10.1016/j.chemolab.2015.09.018
Xi, Y., Shujuan, H., & Yinghui, T. (2007, 9-11 June 2007). Analysis and Optimization of Ticket Selling Service System of the Chengdu Railway Station. Paper presented at the Service Systems and Service Management, 2007 International Conference on.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊