跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 11:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許佑惟
研究生(外文):Yu-Wei Hsu
論文名稱:考量整備成本下多零件並聯系統之最佳群體置換策略
論文名稱(外文):Optimal Group Replacement Policy for Repairable Multi-Component Parallel Systems under Various Setup Costs
指導教授:葉瑞徽葉瑞徽引用關係
指導教授(外文):Ruey-Huei Yeh
口試委員:葉瑞徽
口試委員(外文):Ruey-Huei Yeh
口試日期:2016-06-13
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:60
中文關鍵詞:整備成本分群置換策略多零件並聯系統小修
外文關鍵詞:Setup costGroup replacementMulti-componentParallel systemMinimal repair
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
論文主要針對多零件並聯系統,探討系統零件的最佳置換分群策略及系統零件執行置換時所帶來的整備成本對系統零件分群置換策略之影響。因為系統由零件以並聯方式所組合,所以零件的運作彼此之間為互相獨立,任一零件失效將不會影響系統的正常運作。當系統中任一零件失效時,皆以小修方式處理。一般來說,零件會隨著使用年齡的增加而退化,為了降低失效次數,零件應執行預防性置換作業。零件在執行置換的過程中會產生整備成本(外包專業團隊進行置換與設置的費用),且整備成本相較高於維修成本。因此,本論文考慮對零件執行分群置換策略以降低整備成本,建構零件分群置換之數學模式,使得系統之總成本率最小,並以數值範例分析整備成本對系統零件分群置換策略之影響。
This paper investigates the effect of setup cost on the group replacement policies for a multi-component parallel system. Since multi-components are connected in parallel, each component operates independently without affecting the operation of the system. The failure of each component can be rectified by minimal repair. In general, a component may fail more frequently due to deterioration or aging. In this case, the component should be replaced at a certain time in order to reduce the number of failures. However, in this case when a replacement is outsourced and requires a team of professional technicians to perform the replacement action, the resulting cost is relatively high compared to the minimal repair cost. This cost is referred to the setup cost in this paper. Under this situation, the group replacement policy is considered to reduce the number of setups. In this paper, the mathematical model of group replacement policy for multi-component parallel system is derived such that the expected long run rate is minimized. Furthermore, the numerical examples are given to illustrate the effect of setup cost on the optimal group replacement policy.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 1
1.3 研究範圍 2
1.4 論文架構 2
第2章 文獻探討 4
2.1 維修策略 4
2.2 置換策略 7
2.3 並聯系統 9
第3章 數學模型 11
3.1 系統描述 11
3.2 零件分群之系統成本模式 13
3.3 系統零件最佳分群置換時程 16
3.4 韋伯分配下最佳置換時程 20
第4章 數值分析 23
4.1 參數設定 23
4.2 當機成本對分群策略之影響 26
4.3 整備成本對分群策略之影響 33
第5章 結論與未來研究方向 41
5.1 結論 41
5.2 未來研究方向 42
參考文獻 43
附錄1. 相關成本分析表 47
[1]王美崴,「雙元件系統個別與群體置換之比較」,中國工業工程學會學術研討會,2014。
[2]林貞儀,「免費小修對產品年齡置換策略的影響」,國立台灣科技大學工業管理系碩士論文,2004。
[3]葉瑞徽,「產品保證對最佳維修策略之影響」,國科會研究計畫NSC-91-2213-E-011-091, 2002。
[4]Barlow, R. E. and L. C. Hunter, “Optimum preventive maintenance policies, ” Operational Research, 8-1, 90-100 (1960).
[5]Berg, R. E. and B. Epstein, “Comparison of age, block and failure replacement policies,” IEEE Transactions on Reliability, 27-1, 25-29 (1978).
[6]Beichelt, F., “A generalized block-replacement policy,” IEEE Transactions on Reliability, 30, 171-172 (1981).
[7]Brown, M. and F. Proschan, “Imperfect repair,” Journal of Applied Probability, 20, 851-859 (1983).
[8]Chien, Y. H., “Optimal age-replacement policy under an imperfect renewing free-replacement warranty,” IEEE Transactions on Reliability, 57, 125-133 (2008).
[9]Chen, M. and M. Feldman, “Optimum replacement policies with minimal repair and age-dependent costs, ”European Journal of Operational Research, 98, 75-84 (1997).
[10]Chien, Y. H. and S. H. Sheu, “Extended optimal age-replacement policy with minimal repair of a system subject to shocks,” European Journal of Operational Research, 174-1, 169-181 (2006).
[11]Chien, Y. H., C. C. Chang, and S. H. Sheu “Optimal periodical time for preventive replacement based on a cumulative repair-cost limit and random lead time, ” Journal of Risk and Reliability, 223, 333-345 (2009).
[12]Hsu, T. C., M. W. Wang, W. L. Chang, and R. H. Yeh. “ The impact of downtime cost on replacement policies for repairable two-component series system, In: Proc 16th Int Conf on APIEMS. Ho Chi Minh City, Vietman (2015).
[13]Hsu, Y. W., W. L. Chang, and R. H. Yeh. “ The effect of setup cost on replacement policies for repairable two-component parallel systems, In: Proc 16th Int Conf on APIEMS. Ho Chi Minh City, Vietman (2015).
[14]Jhang, J. P. and S. H. Sheu, “Opportunity-based age replacement policy with minimal repair,” Reliability Engineering and System Safety, 64, 339-344 (1999).
[15]Laggoune. R., A. Chateauneuf, and D. Aissani, “Opportunistic policy for optimal preventive maintenance of a multi-component system in continuous operating units,” Computers and Chemical Engineering, 33, 1499-1510 (2009).
[16]Malki, Z., D. A. Kadi, and M. S. Ouali, “Optimal replacement policies for two-component parallel system with stochastic dependence,” Industrial Engineering and Systems Management, 1-5, (2013).
[17]Nakagawa, T., “Replacement problem of a parallel system in random environment,” Journal of Applied Probability, 16, 203-205 (1979).
[18]Nakagawa, T., “Optimal number of units for a parallel system,” Journal of Applied Probability, 21, 431-436 (1984).
[19]Nakagawa, T. and M. Kowada, “Analysis of a system with minimal repair and its application to replacement policy,” European Journal of Operational Research, 12, 176-182 (1983).
[20]Nakagawa, T. and S. Mizutani, “A summary of maintenance policies for a finite interval,” Reliability Engineering and System Safety, 94, 89-96 (2009).
[21]Nakagawa, T. and X. Zhao, “Optimization problems of a parallel system with a random number of units,” IEEE Transactions on Reliability, 61, 543-548 (2012).
[22]Nguyen, D. G. and D. N. P. Murthy, “Optimal replace-repair strategy for servicing products sold under warranty,” European Journal of Operational Research, 39, 206-212 (1989).
[23]Osaki, S., “Applied stochastic system modeling,” Springer, New York.
[24]Shafiee, M., and M. Finkelstein, “An optimal age-based group maintenance policy for multi-unit degrading systems,” Reliability Engineering and System Safety, 134, 230-238 (2015).
[25]Sheu, S. H., “Extended block replacement policy of system subject to shocks,” IEEE Transactions on Reliability, 46, 375-382 (1997).
[26]Sheu, S. H. and W. S. Griffith, “Optimal age-replacement policy with age-dependent minimal-repair and random-lead time,” IEEE Transactions on Reliability, 50, 302-309 (2001).
[27]Sheu. S. H., C. C. Chang, and Y. L. Chen, “A periodic replacement model based on cumulative repair-cost limit for system subjected to shocks,” IEEE Transactions on Reliability, 59, 374-382 (2010).
[28]Sheu, S. H. and Z. G. Zhang, “An Optimal Age Replacement Policy for Multi-State Systems,” IEEE Transactions on Reliability, 62, 73-81 (2013).
[29]Wang, H. Z. and H. Pham, “Optimal age-dependent preventive maintenance policies with imperfect maintenance,” International Journal of Reliability, Quality and Safety Engineering, 3, 119-135 (1996).
[30]Wang, H. Z. and H. Pham, “Availability and maintenance of series systems subject to imperfect repair and correlated failure and repair,” European Journal of Operational Research, 174, 1706-1722 (2006).
[31]Yasui, K., T. Nakagawa, and S. Osaki., “A summary of optimum replacement policies for a parallel redundant system”, Microelectronics Reliability, 28, 635-641 (1998).
[32]Zhao, R., K. Song, and J. Zhu., “Block replacement for multi-component system with fuzzy lifetimes,” In: Proc IEEE Int Conf on Fuzzy Systems. Honolulu, HI (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top