跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林暐鈞
研究生(外文):Wei-Chun Lin
論文名稱:頂接觸式結構有機薄膜電晶體製作及其性能改善與可靠度之研究
論文名稱(外文):Fabrication and investigation of the organic thin-film transistor with top-contact structure and its performance and reliability improvement
指導教授:范慶麟
指導教授(外文):Ching-Lin Fan 
口試委員:范慶麟
口試委員(外文):Ching-Lin Fan 
口試日期:2016-07-15
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:129
中文關鍵詞:五苯環有機薄膜電晶體613-五并苯醌四氟四氰基醌二甲烷舉離
外文關鍵詞:pentaceneorganic thin-film transistorPQF4TCNQand lift-off
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要內容在於研究五苯環有機薄膜電晶體搭配頂接觸式結構之元件製作以及其電特性分析與改善。首先,我們提出以 6,13-五并苯醌薄膜作為載子注入層,穿插於五苯環通道層與源/汲極之間來改善上接觸式元件結構之電性特性。其研究結果顯示,6,13-五并苯醌薄膜在五苯環通道層上呈現不連續的島嶼狀,當元件經由使用五奈米厚度之 6,13-五并苯醌載子注入層之後,其輸出電流與載子移動率的表現與未使用 6,13-五并苯醌載子注入層之元件相比,分別增加了 2.25 倍和 1.79 倍。這可以歸因於在島嶼狀之6,13-五并苯醌載子注入層的引入大幅降低了有機半導體與金屬之間的載子注入能障,並使載子能輕易地藉由穿隧效應進行傳輸,進而大幅提升載子注入效率。而載子注入效率的提升亦反映在元件之有機半導體與金屬之間的接觸電阻上,進而提升元件之電性表現。
其次,我們提出以共蒸鍍方式摻雜四氟四氰基醌二甲烷於五苯環中作為載子注入層,穿插於五苯環通道層與源/汲極之間來改善上接觸式元件結構之電性特性,並同時比較摻雜型與絕緣型(鐵氟龍)的載子注入層應用於上接觸式結構有機薄膜電晶體之製程容忍度。其研究結果顯示,藉由沉積厚度為五奈米且摻雜比例為 1:1 之四氟四氰基醌二甲烷的五苯環的載子注入層,可以得到五苯環通道層與源/汲極之間最佳載子注入效率,進而提升元件之電氣特性。其輸出電流與載子移動率的表現與未使用四氟四氰基醌二甲烷的五苯環載子注入層之元件相比,分別增加了 1.93 倍和 1.75 倍。這可以歸因於四氟 四氰基醌二甲烷的摻雜增加五苯環內的電洞濃度,進而提升了有機半導體與金屬之間的導電度,另外透過多層階能障的形成使電洞載子能輕易地進行傳輸,大幅提升載子注入效率。此外觀察發現摻雜型四氟四氰基醌二甲烷的五苯環載子注入層厚度變化對上接觸式結構有機薄膜電晶體電性影響比絕緣型鐵氟龍的厚度變化影響有著較穩定的製程容忍度。這可以歸因於當絕緣型鐵氟龍屬於高阻值材料,當厚度增加則會大幅降低載子穿隧效率,然而摻雜型四氟四氰基醌二甲烷的五苯環載子注入層具有高導電度及細分介面能障而較不受厚度增加的影響。
再者,我們探討在持續彎曲情況下以聚(4-乙基苯酚)作為閘極絕緣層之可撓式有機薄膜電晶體在真空環境及一般大氣下的電性變化機制。其研究結果顯示,當可撓式元件持續彎曲的時間越久,其汲極通道電流和載子移動率會大幅降低。這可以歸因於彎曲下的機械應力造成五苯環通道的破裂,進而阻礙電洞載子的跳躍傳輸過程。然而當一持續彎曲可撓式元件處於一般大氣下時,環境水氣分子易透過機械彎曲應力所造成元件五苯環通道的裂縫擴散至聚(4-乙基苯酚)閘極絕緣層和五苯環通道層介面形成極化水分子缺陷,進而增加汲極通道電流、關閉電流和次臨界百幅。這可以歸因於吸附在聚(4-乙基苯酚)閘極絕緣層表面的極化水分子缺陷會增加五苯環通道的導電度所致。
最後,我們提出以兩階段式 SU8/聚乙烯醇雙層舉離黃光技術製作出具短通道的有機薄膜電晶體來改善上接觸式元件結構之電性特性。其研究結果顯示,藉由此雙層舉離黃光技術五苯環通道層不僅不受聚乙烯醇緩衝層塗佈和去離子水舉離過程的傷害,且能製作出通道長度僅為五微米的上接觸式結構元件。此外觀察發現其起始電壓和載子移動率分別受到汲極誘導能障降低效應及接觸電阻在總電阻內比例的增加所影響,因此其隨著元件通道縮小而降低。
In this thesis, we study on the device fabrication and electrical performance analysis and improvement of pentacene-based organic thin-film transistors (OTFTs) with top-contact (TC) structure. First, we demonstrate top-contact pentacene-based OTFTs fabricated by inserting a PQ carrier injection layer between the pentacene channel layer and S/D electrodes to improve electrical performance of the OTFTs. The PQ film surface presumed to be discrete with
discontinuous islands on pentacene channel layer, this results in the formation of two different junctions at Au/pentacene and Au/PQ/pentacene interface. Compared to device without a PQ layer, the inserted 5-nm-thick PQ layer can enhance the IDS and μFE by 225% and 179%, respectively. The improvements are attributed to the reduction of hole injection barrier and tunneling process at the Au/pentacene interface, which can be confirmed by the reduced contact resistance measured at linear region.
Second, we demonstrated the co-evaporation scheme is used for evaporating
tetrafluorotetracyanoquinodimethane (F4TCNQ) and pentacene simultaneously to form an F4TCNQ-doped pentacene interlayer between the Au S/D electrodes and the pentacene channel layer of TC pentacene-based OTFTs and, thus, improve the OTFT performance. Compared with a pentacene-based OTFT without an F4TCNQ-doped pentacene interlayer, OTFTs with an 5 nm thick and F4TCNQ:pentacene ratio of 1:1 showed considerably improved electrical characteristics. The improvements are attributed to the formation of a subdivided barrier and high local conductivity at the Au electrode/pentacene channel interface, which effectively reduced the hole injection barrier. In addition, the dependence of the OTFT performance on the thickness of the F4TCNQ-doped pentacene interlayer is weaker
than that on a Teflon interlayer. A molecular doping-type F4TCNQ-doped pentacene interlayer is a suitable carrier injection layer that can improve the TC-OTFT performance and facilitate obtaining a stable process window. The results are attributed to Teflon is an insulating material with an extremely high resistivity (1018 Ω·cm). When the Teflon interlayer thickness exceeds a critical value, the insulating properties of the interlayer become dominant
and reduce the carrier tunneling probability.
Third, we investigated how continuous bending stress affected the electrical
characteristics of pentacene-based OTFTs with the poly-4-vinylphenol (PVP) gate insulator in a vacuum and ambient air. The OTFT device bent in a vacuum exhibited a decreased on current because the pentacene channel layer was cracked, which obstruct the transport of charge carriers, deteriorating the on current of OTFTs. However, the OTFTs device bent in ambient air exhibited a slightly decreased on current and the greatly increased off current and
subthreshold swing. We presume that the moisture in the air can pass through the pentacene cracks into the interface between the PVP and pentacene layer, yielding the increase in polar moisture traps, and leading to an increase in the conductivity of pentacene.
Finally, we propose a two-step SU8/poly(vinyl alcohol) (PVA) lift-off photolithography scheme for fabricating top-contact pentacene-based OTFTs with small channels. The bilayer of PVA and SU8 will not damage the pentacene channel layer in the lift-off photolithography process used in forming the patterned pentacene channel layer and source/drain metal electrodes. The proposed scheme produces pentacene-based OTFTs with a patterned pentacene channel layer and S/D metal electrodes that prevent fringe current and obtain a
minimum channel length of 5µm. In addition, the μFE and VTH of the pentacene-based OTFTs decrease with the channel length, resulting from the increased proportion of RC in total resistance and drain-induced barrier lowering, respectively.
Abstract (in Chinese)
Abstract
Acknowledgement (in Chinese)
Contents
List of Tables
List of Figures
Chapter 1 Introduction
1.1 Overview of Organic Thin-Film Transistors
1.2 Organic Semiconductor Materials
1.2.1 Polymers
1.2.2 Small Molecules
1.3 Charge Carrier Transport in Organic Semiconductors
1.4 Device Structures and Operation of OTFTs
1.4.1 Device Structures of OTFTs
1.4.2 Operation of OTFTs
1.5 Motivation
1.6 Thesis Organization
Chapter 2 Device Fabrication and Electrical Parameters Extraction
2.1 Materials Selection
2.1.1 Substrate and Gate Electrode
2.1.2 Gate dielectric
2.1.3 Organic Semiconductor Layer
2.1.4 Carrier injection buffer
2.1.5 Source and Drain Electrodes
2.2 Device Fabrication Process
2.3 Measurement and Characterization for OTFTs
2.3.1 Electrical Measurement
2.3.2 Electrical Characterization
2.3.3 Material Characterization
Chapter 3 Performance enhancement of pentacene-based organic thin-film transistors using 6,13-pentacenequinone as a carrier injection interlayer
3.1 Introduction
3.2 Experiments
3.3 Results and Discussion
3.4 Conclusion
Chapter 4 Effects of the F4TCNQ-Doped Pentacene Interlayers on Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors
4.1 Introduction
4.2 Experiments
4.3 Results and Discussion
4.4 Conclusion
Chapter 5 Correlation between ambient air and continuous bending stress for the electrical reliability of flexible pentacene-based thin-film transistors
5.1 Introduction
5.2 Experiments
5.3 Results and Discussion
5.4 Conclusion
Chapter 6 The top-contact pentacene-based organic thin-film transistors with short-channel length using two-step SU8/PVA lift-off photolithography process
6.1 Introduction
6.2 Experiments
6.3 Results and Discussion
6.4 Conclusion
Chapter 7 Conclusions and Future Works
7.1 Conclusions
7.2 Future Works
References
Resume (個人簡歷)
[1]J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, and X. Zhan, “n-Type Organic Semiconductors in Organic Electronics,” Advanced Materials, Vol. 22, No. 34, pp. 3876-3892 (2010).
[2]C. L. Fan, Y. Z. Lin, and C. H. Huang, “Combined Scheme of UV/Ozone and HMDS Treatment on a Gate Insulator for Performance Improvement of a Low-Temperature-Processed Bottom-Contact OTFT,” Semiconductor Science and Technology, Vol. 26, No. 3, pp. 045006-1-045006-5 (2011).
[3]T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Flexible Organic Transistors and Circuits with Extreme Bending Stability,” Nature Materials, Vol. 9, No. 12, pp. 1015-1022 (2010).
[4]A. C. Mayer, M. T. Lloyd, D. J. Herman, T. G. Kasen, and G. G. Malliaras, “Postfabrication Annealing of Pentacene-Based Photovoltaic Cells,” Applied Physics Letters, Vol. 85, No. 25, pp. 6272-6274 (2004).
[5]C. C. Lee, C. H. Yuan, S. W. Liu, and Y. S. Shih, “Efficient Deep Blue Organic Light-Emitting Diodes Based on Wide Band Gap 4-Hydroxy-8-Methyl-1.5-Naphthyridine Aluminum Chelate as Emitting and Electron Transporting Layer,” Journal of Display Technology, Vol. 7, No. 8, pp. 454-458 (2011).
[6]C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Advanced Materials, Vol. 14, No. 2, pp. 99-117 (2002).
[7]A. Tsumura, K. Koezuka, and T. Ando, “Macromolecular Electronic Device: Field-Effect Transistor with a Polythiophene Thin Film,” Applied Physics Letters, Vol. 49, No. 18, pp. 1210–1212 (1986).
[8]G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, and F. Garnier, “A Field-Effect Transistor Based on Conjugated Alpha-Sexithienyl,” Solid State Communications, Vol. 72, No. 4, pp. 381–384 (1989).
[9]J. M. Shaw, and P. F. Seidler, “Organic Electronics: Introduction,” IBM Journal of Research and Development, Vol. 45, No. 1, pp. 3–9 (2001).
[10]C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic Thin-Film Transistor-Driven Polymer-Dispersed Liquid Crystal Displays on Flexible Polymeric Substrates,” Applied Physics Letters, Vol. 80, No. 6, pp. 1088–1090 (2006).
[11]M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita, “Flexible AM OLED Panel Driven by Bottom-Contact OTFTs,” IEEE Electron Device Letters, Vol. 27, No. 4, pp. 249–251 (2006).
[12]R. Wisnieff, “Display Technology: Printing Screens,” Nature, Vol. 394, No. 6690, pp. 225–227 (1998).
[13]R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M. Grigas, K. Dimmlerb, O. Shchekin, and A. Dodabalapur, “Radio Frequency Rectifiers Based on Organic Thin-Film Transistors,” Applied Physics Letters, Vol. 88, No. 12, pp. 123502–123502-3 (2006).
[14]T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A Large-Area, Flexible Pressure Sensor Matrix with Organic Field-Effect Transistors for Artificial Skin Applications,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, No. 27, pp. 9966–9970 (2004).
[15]G. Horowitz, “Organic Thin Film Transistors: From Theory to Real Devices,” Journal of Materials Research, Vol. 19, No. 7, pp. 1946–1962 (2004).
[16]S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, and W. K. Kim, “High-Performance Polymer TFTs Printed on a Plastic Substrate,” IEEE Transactions on Electron Devices, Vol. 49, No. 11, pp. 2008–2015 (2002).
[17]S. Locci, M. Morana, E. Orgiu, A. Bonfiglio, and P. Lugli, “Modeling of Short-Channel Effects in Organic Thin-Film Transistors,” IEEE Transactions on Electron Devices, Vol. 55, No. 10, pp. 2561–2567 (2008).
[18]B. Kumar, B. K. Kaushik, and Y. S. Negi, “Perspectives and Challenges for Organic Thin Film Transistors: Materials, Devices, Processes and Applications,” Journal of Materials Science: Materials in Electronics, Vol. 25, No. 1, pp. 1–30 (2014).
[19]B. C. Shekar, J. Lee, and S. W. Rhee, "Organic Thin Film Transistors: Materials, Processes and Devices," Korean Journal of Chemical Engineering, Vol. 21, No. 1, pp. 267–285 (2004).
[20]J. H. Schon, “New Phenomena in High Mobility Organic Semiconductors,” Physica Status Solidi (b), Vol. 226, No. 2, pp. 257–270 (2001).
[21]J. H. Schon, and B. Batlogg, “Trapping in Organic Field-Effect Transistors,” Journal of Applied Physics, Vol. 89, No. 1, pp. 336–342 (2001).
[22]G. Horowitz, “Organic Field-Effect Transistors,” Advanced Materials, Vol. 10, No. 5, pp. 365–377 (1998).
[23]T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, “Charge Injection Process in Organic Field-Effect Transistors,” Applied Physics Letters, Vol. 91, No. 5, pp. 053508-1–053508-3 (2007).
[24]S. Schiefer, M. Huth, A. Dobrinevski, and B. Nickel, “Determination of the Crystal Structure of Substrate-Induced Pentacene Polymorphs in Fiber Structured Thin Films,” Journal of the American Chemical Society, Vol. 129, No. 34, pp. 10316–10317 (2007).
[25]J. R. Brews, K. K. Ng, and R. K. Watts, Submicron Integrated Circuits, John Wiley and Sons, NY, pp. 9–86 (1989).
[26]H. W. Zan, K. H. Yen, P. K. Liu, K. H. Ku, C. H. Chen, and J. Hwang, “Low-Voltage Organic Thin Film Transistors with Hydrophobic Aluminum Nitride Film as Gate Insulator,” Organic Electronics, Vol. 8, No. 4, pp. 450–454 (2007).
[27]A. Lodha and R. Singh, “Prospects of Manufacturing Organic Semiconductor-Based Integration Circuits,” IEEE Transactions on Semiconductor Manufacturing, Vol. 14, No. 3, pp. 281–296 (2001).
[28]K. Shibata, K. Ishikawa, H. Takezoe, H. Wada, and T Mori, “Contact Resistance of Dibenzotetrathiafulvalene-Based Organic Transistors with Metal and Organic Electrodes,” Applied Physics Letters, Vol. 92, No. 2, pp. 023305-1–023305-3 (2008).
[29]N. Takahashi, A. Maeda, K. Uno, E. Shikoh, Y. Yamamoto, H. Hori, Y. Kubozono, and A. Fujiwara, “Output Properties of C60 Field-Effect Transistors with Different Source/Drain Electrodes,” Applied Physics Letters, Vol. 90, No. 8, pp. 083503-1–083503-3 (2007).
[30]H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact Resistance in Organic Thin-Film Transistors,” Solid-State Electronics, Vol. 47, No. 2, pp. 297–301 (2003).
[31]J. Park, J. M. Kang, D. W. Kim, and J. S. Choi, “Contact Resistance Variation in Top-Contact Organic Thin-Film Transistors with the Deposition Rate of Au Source/Drain Electrodes,” Thin Solid Films, Vol. 518, No. 22, pp. 6232–6235 (2010).
[32]F. Li, A. Nathan, Y. Wu, and B. S. Ong, Organic thin film transistor integration: A hybrid approach, John Wiley and Sons, NY, pp. 13–49 (2011).
[33]Y. Zhou, S. T. Han, Z. X. Xu, and V. A. L. Roy, “Polymer–nanoparticle hybrid dielectrics for flexible transistors and inverters,” Journal of Materials Chemistry, Vol. 22, No. 9, pp. 4060–4065 (2012).
[34]C. L. Fan, Y. Z. Lin, P. C. Chiu, S. J. Wang, and W. D. Lee, “Teflon/SiO2 bilayer passivation for improving the electrical reliability of pentacene-based organic thin-film transistors,” Organic Electronics, Vol. 14, No. 9, pp. 2228–2232 ( 2013).
[35]H. Y. Chen, I. W. Wu, C. T. Chen, S. W. Liu, and C. I. Wu, “Self-assembled monolayer modification of silver source–drain electrodes for high-performance pentacene organic field-effect transistors,” Organic Electronics, Vol. 13, No. 4, pp. 593–598 (2012).
[36]Y. Chung, B. Murmann, S. Selvarasah, M. R. Dokmeci, and Z. Bao, “Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks,” Applied Physics Letters, Vol. 96, No. 13, pp. 133306 (2010).
[37]S. K. Lin, Y. C. Li, Y. J. Lin, and Y. H. Wang, “Effects of tri-layer polymer dielectrics on electrical characteristics in pentacene thin film transistors,” ECS Solid State Letters, Vol. 3, No. 7, pp.N19–N22 (2014).
[38]L. K. Mao, J. C. Hwang, and J. C. Tsai, “Operation voltage reduction and gain enhancement in organic CMOS inverters with the TTC/gelatin bilayer dielectric,” Organic Electronics, Vol. 16, pp.221–226 (2015).
[39]D. I. Kim, B. U. Hwang, J. S. Park, H. S. Jeon, B. S. Bae, H. J. Lee, and N. E. Lee, “Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors,” Organic Electronics, Vol. 13, No. 11, pp. 2401–2405 (2012).
[40]Y. Su, M. Wang, F. Xie, J. Chen, W. Xie, N. Zhao, and J. Xu, “In situ modification of low-cost Cu electrodes for high-performance low-voltage pentacene thin film transistors (TFTs),” Organic Electronics, Vol. 14, No. 3, pp. 775–781 (2013).
[41]Y. Xu, C. Liu, H. Sun, F. Balestra, G. Ghibaudo, W. Scheideler, and Y. Y. Noh, “Metal evaporation dependent charge injection in organic transistors,” Organic Electronics, Vol. 15, No. 8, pp. 1738–1744 (2014).
[42]M. W. Alam, Z. Wang, S. Naka, and H. Okada, “Mobility enhancement of top contact pentacene based organic thin film transistor with bi-layer GeO/Au electrodes,” Applied Physics Letters, Vol. 102, No. 6, pp. 061105 (2013).
[43]C. L. Fan and P. C. Chiu, “Performance improvement of top-contact pentacene-based organic thin-film transistors by inserting an ultrathin teflon carrier injection layer,” Japanese Journal of Applied Physics, Vol. 50, No. 10R, pp. 100203 (2011).
[44]M. W. Alam, Z. Wang, S. Naka, and H. Okada, “Performance enhancement of top-contact pentacene-based organic thin-film transistors with bilayer WO3/Au electrodes,” Japanese Journal of Applied Physics, Vol. 52, No. 3S, pp. 03BB08 (2013).
[45]J. Li, H. P. Lin, F. Zhou, W. Q. Zhu, X. Y. Jiang, and Z. L. Zhang, “Suppression of bias stress-induced degradation of pentacene-TFT using MoOx interlayer,” Current Applied Physics, Vol. 12, No. 1, pp. 280–283 ( 2012).
[46]N. Koch, I. Salzmann, R. L. Johnson, J. Pflaum, R. Friedlein, and J. P. Rabe, “Molecular orientation dependent energy levels at interfaces with pentacene and pentacenequinone,” Organic Electronics, Vol. 7, No. 6, pp. 537–545 (2006).
[47]H. S. Lee, K. H. Lee, C. H. Park, P. J. Jeon, K. Choi, D. H. Kim, H. R. Kim, G. H. Lee, J. H. Kim, and S. Im, “Ambient-protecting organic light transducer grown on pentacene-channel of photo-gating complementary inverter,” Journal of Materials Chemistry, Vol. 22, No. 10, pp. 4444–4449 (2012).
[48]C. L. Fan, T. H. Yang, and P. C. Chiu, “Performance improvement of bottom-contact pentacene-based organic thin-film transistors by inserting a thin polytetrafluoroethylene buffer layer,” Applied Physics Letters, Vol. 97, No. 14, pp. 143306 (2010).
[49]J. H. Bae and Y. Choi, “Engineered interface using a hydroxyl group-free polymeric buffer layer onto a TiO2 nanocomposite film for improving the electrical properties in a low-voltage operated organic transistor,” Surface and Interface Analysis, Vol. 44, No. 4, pp. 445–449 (2012).
[50]C. L. Fan, W. C. Lin, H. S. Chang, Y. Z. Lin, and B. R. Huang, “Effects of the F4TCNQ-doped pentacene interlayers on performance improvement of top-contact pentacene-based organic thin-film transistors,” Materials, Vol. 9, No. 1, pp. 46 (2016).
[51]Y. J. Lin, Y. C. Li, T. C. Wen, L. M. Huang, Y. K. Chen, H. J. Yeh, and Y. H. Wang, “Improvement of transparent organic thin film transistor performance by inserting a lithium fluoride buffer layer,” Applied Physics Letters, Vol. 93, No. 4, pp. 043305 (2008).
[52]P. D. Marco, F. Fioriti, F. Bisti, P. Parisse, S. Santucci, and L. Ottaviano, ”Bulk phase two dimensional chiral growth of 6, 13 Pentacenequinone on SiO2,” Journal of Applied Physics, Vol. 109, No. 6, pp. 063508 (2011).
[53]I. Salzmann, R. Opitz, S. Rogaschewski, J. P. Rabe, and N. Koch, “Phase separation in vacuum codeposited pentacene/6,13-pentacenequinone thin films,” Physical Review B, Vol. 75, No. 17, pp. 174108 (2007).
[54]P. Parisse, F. Bussolotti, M. Passacantando, and L. Ottaviano, “3D island growth of 6,13 pentacenequinone on silicon oxide and gold,” Journal of Non-Crystalline Solid, Vol. 356, No. 37, pp. 2079–2082 (2010).
[55]S. H. Jin, K. D. Jung, H. Shin, B. G. Park, and J. D. Lee, “Grain size effects on contact resistance of top-contact pentacene TFTs,” Synthetic Metals, Vol. 156, No. 2, pp. 196–201 (2006).
[56]S. K. Lin, Y. C. Li, Y. J. Lin, and Y. H. Wang, “Effects of tri-layer polymer dielectrics on electrical characteristics in pentacene thin-film transistors,” ECS Solid State Letters, Vol. 3, No. 7, pp. N19–N22 (2014).
[57]H. Y. Chen, I. W. Wu, C. T. Chen, S. W. Liu, and C. I. Wu, “Self-assembled monolayer modification of silver source-drain electrodes for high-performance pentacene organic field-effect transistors,” Organic Electronics, Vol. 13 No. 4, pp. 593–598 (2012).
[58]C. L. Fan, Y. Z. Lin, P. C. Chiu, S. J. Wang, and W. D. Lee, “Teflon/SiO2 bilayer passivation for improving the electrical reliability of pentacene-based organic thin-film transistors,” Organic Electronics, Vol. 14, No. 9, pp. 2228–2232 (2013).
[59]Y. Fujisaki, Y. Nakajima, T. Takei, H. Fukagawa, T. Yamamoto, and H. Fujikake, “Flexible active-matrix organic light-emitting diode display using air-stable organic semiconductor of Dinaphtho[2, 3-b: 2’, 3’-f]thieno[3, 2-b]-thiophene,” IEEE Transactions on Electron Devices, Vol. 59, No. 12, pp. 3442–3449 (2012).
[60]Y. Su, M. Wang, F. Xie, J. Chen, W. Xie, N. Zhao, J. Xu, “In situ modification of low-cost Cu electrodes for high-performance low-voltage pentacene thin-film transistors (TFTs),” Organic Electronics, Vol. 14. No. 3, pp. 775–781 (2013).
[61]Y. Xu, C. Liu, H. Sun, F. Balestra, G. Ghibaudo, W. Scheideler, Y. Y. Noh, “Metal evaporation dependent charge injection in organic transistors,” Organic Electronics, Vol. 15, No. 8, pp. 1738–1744 (2014).
[62]C. L. Fan and P. C. Chiu, “Performance improvement of top-contact pentacene-based organic thin-film transistors by inserting an ultrathin Teflon carrier injection layer,” Japanese Journal of Applied Physics, Vol. 50, No. 10, pp. 100203 (2011).
[63]M. W. Alam, Z. Wang, S. Naka, and H. Okada, “Mobility enhancement of top contact pentacene based organic thin-film transistor with bi-layer GeO/Au electrodes,” Applied Physics Letters, Vol. 102, No. 6, pp. 061105 (2013).
[64]H. Wang, L. Wang, Y. Gao, D. Zhang, and Y. Qiu, “Efficient organic light-emitting diodes with Teflon as buffer layer,” Japanese Journal of Applied Physics, Vol. 43, No. 10, pp. L1353–L1355 (2004).
[65]Z. Wu, L. Wang, H. Wang, Y. Gao, and Y. Qiu, “Charge tunneling injection through a thin teflon film between the electrodes and organic semiconductor layer: Relation to morphology of the teflon film,” Physical Review B, Vol. 74, No. 16, pp. 165307–165315 (2006).
[66]S. H. Su, C. M. Wu, S. Y. Kung, and M. Yokoyama, “Enhancing the performance of organic thin-film transistors using an organic-doped inorganic buffer layer,” Thin Solid Films, Vol. 536, pp. 229–234 (2013).
[67]J. Li, X. W. Zhang, L. Zhang, K. U. Haq, X. Y. Jiang, W. Q. Zhu, and Z. L. Zhang, “Improving organic transistor performance through contact-area-limited doping,” Solid State Communications, Vol. 149, No. 41, pp. 1826–1830 (2009).
[68]K. Harada, M. Riede, K. Leo, O. R. Hild, and C. M. Elliott, “Pentacene homojunctions: Electron and hole transport properties and related photovoltaic responses,” Physical Review B, Vol. 77, No. 19, pp. 195212 (2008).
[69]C. T. Lee and H. C. Chen, “Performance improvement mechanisms of organic thin-film transistors using MoOx-doped pentacene as channel layer,” Organic Electronics, Vol. 12, No. 11, pp. 1852–1857 (2011).
[70]P. Yan, Z. Liu, S. Zhang, D. Liu, X. Wang, S. Yue, and Y. Zhao, “Observation of hole injection boost via two parallel paths in Pentacene thin-film transistors by employing Pentacene: 4,4”-tris(3-methylphenylphenylamino) triphenylamine: MoO3 buffer layer,” APL Materials, Vol. 2, No. 11, pp. 116103 (2014).
[71]Y. Wakatsuki, K. Noda, Y. Wada, T. Toyabe, and K. Matsushige, “Molecular doping effect in bottom-gate, bottom-contact pentacene thin-film transistors,” Journal of Applied Physics, Vol. 110, No. 5, pp. 054505 (2011).
[72]S. H. Jin, K. D. Jung, H. Shin, B. G. Park, and J. D. Lee, “Grain size effects on contact resistance of top-contact pentacene TFTs,” Synthetic Metals, Vol. 156, No. 2, pp. 196–201 (2006).
[73]C. L. Fan, T. H. Yang, and P. C. Chiu, “Performance improvement of bottom-contact pentacene-based organic thin-film transistors by inserting a thin polytetrafluoroethylene buffer layer,” Applied Physics Letters, Vol. 97, No. 14, pp. 143306 (2010).
[74]J. H. Bae and Y. Choi, “Engineered interface using a hydroxyl group-free polymeric buffer layer onto a TiO2 nanocomposite film for improving the electrical properties in a low-voltage operated organic transistor,” Surface and Interface Analysis, Vol. 44, No. 4, pp. 445–449 (2012).
[75]Y. Zhou, S. T. Han, Z. X. Xu, and V. A. L. Roy, “Polymer-nanoparticle hybrid dielectrics for flexible transistors and inverters,” Journal of Materials Chemistry, Vol. 22, No. 9, pp. 4060–4065 (2012).
[76]C. L. Fan, Y. Z. Lin, and C. H. Huang, “Combined scheme of UV/ozone and HMDS treatment on a gate insulator for performance improvement of a low-temperature-processed bottom-contact OTFT,” Semiconductor Science and Technology, Vol. 26, No. 4, pp. 045006 (2011).
[77]A. Jedaa and M. Halik, “Toward strain resistant flexible organic thin film transistors,” Applied Physics Letters, Vol. 95, No. 10, pp. 103309 (2009).
[78]C. L. Fan, P. C. Chiu, and C. C. Lin, “Low-temperature-deposited SiO2 gate insulator with hydrophobic methyl groups for bottom-contact organic thin-film transistors,” IEEE Electron Device Letters, Vol. 31, No. 12, pp. 1485–1487 (2010).
[79]Y. Chung, B. Murmann, S. Selvarasah, M. R. Dokmeci, and Z. Bao, “Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks,” Applied Physics Letters, Vol. 96, No. 13, pp. 133306 (2010).
[80]T. Sekitani, and T. Someya, “Air-Stable Operation of Organic Field-Effect Transistors on Plastic Films Using Organic/Metallic Hybrid Passivation Layers,” Japanese Journal of Applied Physics, Vol. 46, No. 7, pp. 4300–4306 (2007).
[81]C. L. Fan, P. C. Chiu, Y. Z. Lin, T. H. Yang, and C. Y. Chiang, “Investigation on the electrical characteristics of a pentacene thin-film transistor and its reliability under positive drain bias stress,” Semiconductor Science and Technology, Vol. 26, No. 12, pp. 125007 (2011).
[82]J. Park, X. Zhang, M. H. Bae, G. T. Park, and J. H. Bae, “Fringe Field Effect on Electrical Characteristics of Pentacene Thin-Film Transistors,” Japanese Journal of Applied Physics, Vol. 52, No. 11, pp. 111602 (2013).
[83]Y. G. Seol, H. Y. Noh, S. S. Lee, J. H. Ahn, and N. E. Lee, “Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistors,” Applied Physics Letters, Vol. 93. No. 1, pp. 013305 (2008).
[84]R. Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, “Effects of O2 and H2O on electrical characteristics of pentacene thin film transistors,” Thin Solid Films, Vol. 464, pp. 437–440 (2004).
[85]F. Werkmeister, and B. Nickel, “Towards flexible organic thin film transistors (OTFTs) for biosensing,” Journal of Materials Chemistry B, Vol. 1, No. 31, pp. 3830–3835 (2013).
[86]H. S. Tan, S. R. Kulkarni, T. Cahyadi, P. S. Lee, and S. G. Mhaisalkar, “Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors ,” Applied Physics Letters, Vol. 93, No. 18, pp. 183503 (2008).
[87]H. Y. Noh, Y. G. Seol, S. I. Kim, and N. E. Lee, “Mechanically Flexible Low-Leakage Nanocomposite Gate Dielectrics for Flexible Organic Thin-Film Transistors,” Electrochemical and Solid State Letters, Vol. 11, No. 8, pp. H218–H221 (2008).
[88]Y.G. Seol, N. E. Lee, S. H. Park, and J. Y. Bae, “Improvement of mechanical and electrical stabilities of flexible organic thin film transistor by using adhesive organic interlayer,” Organic Electronics, Vol. 9, No. 3, pp. 413–417 (2008).
[89]T. Koniger, and H. Munstedt, “Influence of polyvinylpyrrolidone on properties of flexible electrically conducting indium tin oxide nanoparticle coatings,” Journal of Materials Science, Vol. 44, No. 11, pp. 2736–2742 (2009).
[90]Y. G. Seol, W. Heo, J. S. Park, N. E. Lee, D. K. Lee, and Y. J. Kim, “Improvement of Mechanical and Electrical Stability of Flexible Organic Field-Effect Transistors by Multistack Hybrid Encapsulation,” Journal of The Electrochemical Society, Vol. 158, No. 9, pp. H931–H936 (2011).
[91]Y. Zhou, S. T. Han, Z. X. Xu, and V. A. L. Roy, “Polymer–nanoparticle hybrid dielectrics for flexible transistors and inverters,” Journal of Materials Chemistry, Vol. 22, No. 9, pp. 4060–4065 (2012).
[92]T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Flexible organic transistors and circuits with extreme bending stability,” Nature Mayerials, Vol. 9, pp. 1015–1022 (2010).
[93]T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, and T. Someya, “Ultraflexible organic field-effect transistors embedded at a neutral strain position,” Applied Physics Letters, Vol. 87, No. 17, pp. 1–3 (2005).
[94]T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, and T. Sakurai, and T. Someya, “Submillimeter radius bendable organic field-effect transistors,” Journal of Non-Crystalline Solids, Vol. 352, No. 9, pp. 1769–1773 (2006).
[95]Y. G. Seol, J. G. Lee, and N. E. Lee, “Effects of different electroplated gate electrodes on electrical performances of flexible organic thin film transistor and flexibility improvement,” Organic Electronics, Vol. 8, No. 5, pp. 513–521 (2007).
[96]H. Y. Noh, Y. G. Seol, and N. E. Lee, “Improved electrical stability in cyclically bent organic thin film transistors with nanocomposite gate dielectrics and surface passivation,” Applied Physics Letters, Vol. 95, No.11, pp. 113302 (2009).
[97]Y. Fujisaki, H. Sato, H. Fujikake, Y. Inoue, S. Tokito, and T. Kurita, “Liquid Crystal Display Cells Fabricated on Plastic Substrate Driven by Low-Voltage Organic Thin-Film Transistor with Improved Gate Insulator and Passivation Layer,” Japanese Journal of Applied Physics, Vol. 44, No. 6, pp. 3728–3732 (2005).
[98]T. Sekitani, Y. Kato, S. Iba, H. Shinaoka, and T. Someya, “Bending experiment on pentacene field effect transistors on plastic films,” Applied Physics Letters, Vol. 86, No. 7, pp. 1–3 (2005).
[99]C. Yang, J. Yoon, S. H. Kim, K. Hong, and D. S. Chung, “Bending-stress-driven phase transitions in pentacene thin films for flexible organic field-effect transistors,” Applied Physics Letters, Vol. 92, No. 24, pp. 243305 (2008).
[100]D.I. Kim, B.U. Hwang, J.S. Park, H.S. Jeon, B.S. Bae, H.J. Lee, and N. E. Lee, “Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors,” Organic Electronics, Vol. 13, No. 11, pp. 2401–2405 (2012).
[101]M. Kanari, M. Kunimoto, T. Wakamatsu, and I. Ihara, “Critical bending radius and electrical behaviors of organic field effect transistors under elastoplastic bending strain,” Thin Solid Films, Vol. 518, No. 10, pp. 2764–2768 (2010).
[102]Y. G. Seol, J. S. Park, N. T. Tien, N. E. Lee, D. K. Lee, S. C. Lee, Y. J. Kim, C. S. Lee, and H. Kim, “Reduction of Electrical Hysteresis in Cyclically Bent Organic Field Effect Transistors by Incorporating Multistack Hybrid Gate Dielectrics,” Journal of The Electrochemical Society, Vol. 157, No. 11, pp. H1046–H1050 (2010).
[103]H. W. Zan, and T. Y. Hsu, “Stable Encapsulated Organic TFT With a Spin-Coated Poly(4-Vinylphenol-Co-Methyl Methacrylate) Dielectric,” IEEE Electron Device Letters, Vol. 32, No. 8, pp. 1131–1133 (2011).
[104]C. L. Fan, Y. Z. Lin, P. C. Chiu, S. J. Wang, and W. D. Lee, “Teflon/SiO2 bilayer passivation for improving the electrical reliability of pentacene-based organic thin-film transistors,” Organic Electronics, Vol. 14, No. 9, pp. 2228–2232 (2013).
[105]J. Park, J. H. Bae, W. H. Kim, M. H. Kim, C. M. Keum, S. D. Lee, and J. S. Choi, “Effects of Interfacial Charge Depletion in Organic Thin-Film Transistors with Polymeric Dielectrics on Electrical Stability,” Materials, Vol. 3, No. 6, pp. 3614–3624 (2010).
[106]B. Kumar, B. K. Kaushik, and Y. S. Negi, “Static and dynamic characteristics of dual gate organic TFT based NAND and NOR circuits,” Journal of Computational Electronics, Vol. 13, No. 3, pp. 627–638 (2014).
[107]P. Cosseddu, S. Lai, G. Casula, L. Raffo, and A. Bonfiglio, “High performance, foldable, organic memories based on ultra-low voltage, thin film transistors,” Organic Electronics, Vol. 15, No. 12, pp. 3595–3600 (2014).
[108]F. Yin, Z. Xu, S. Zhao, F. Zhang, Y. Chen, C. Kong, W. Gong, and X. Xu, “A DC current–voltage model for organic thin film transistor for circuit design,” Optik, Vol. 125, No. 1, pp. 257–259 (2014).
[109]C. Y. Han, W. M. Tang, C. H. Leung, C. M. Che, and P. T. Lai, “High-Performance Pentacene Thin-Film Transistor With High-K HfLaON as Gate Dielectric,” IEEE Electron Device Letters, Vol. 34, No. 11, pp. 1397–1399 (2013).
[110]F. Adriyanto, C. K. Yang, T. Y. Yang, C. Y. Wei, and Y. H. Wang, “Solution-Processed Barium Zirconate Titanate for Pentacene-Based Thin-Film Transistor and Memory,” IEEE Electron Device Letters, Vol. 34, No. 10, pp. 1241–1243 (2013).
[111]C. L. Fan, W. C. Lin, H. H. Peng, Y. Z. Lin, and B. R. Huang, “Correlation between ambient air and continuous bending stress for the electrical reliability of flexible pentacene-based thin-film transistors,” Japanese Journal of Applied Physics, Vol. 54, No. 1, pp. 011602 (2015).
[112]L. Feng, J. Zhao, W. Tang, X. Xu, and X. Guo, “Solution Processed Organic Thin-Film Transistors With Hybrid Low/High Voltage Operation,” Journal of Display Technology, Vol. 10, No. 11, pp. 971–974 (2014).
[113]W. Wang, J. Ying, J. Han, and W. Xie, “High Mobility Pentacene/C60-Based Ambipolar OTFTs by Thickness Optimization of Bottom Pentacene Layer,” IEEE Transactions on Electron Devices, Vol. 61, No. 11, pp. 3845–3851 (2014).
[114]A. T. Zocco, H. You, J. A. Hagen, and A. J. Steckl, “Pentacene organic thin-film transistors on flexible paper and glass substrates,” Nanotechnology, Vol. 25, No. 9, pp. 094005 (2014).
[115]F. Zanella, N. Marjanovic, R. Ferrini, H. Gold, A. Haase, A. Fian, B. Stadlober, R. Müller, J. Genoe, H. Hirshy, A. Drost, M. König, K. D. Lee, J. Ring, R. Prétôt, C.C. Enz, and J. M. Sallese, “Design and modeling of self-aligned nano-imprinted sub-micrometer pentacene-based organic thin-film transistors,” Organic Electronics, Vol. 14, No. 11, pp. 2756–2761 (2013).
[116]L. K. Mao, J. C. Hwang, and J. C. Tsai, “Operation voltage reduction and gain enhancement in organic CMOS inverters with the TTC/gelatin bilayer dielectric,” Organic Electronics, Vol. 16, pp. 221–226 (2015).
[117]H. Nakanotani, M. Yahiro, and C. Adachi, “Ambipolar field-effect transistor based on organic-inorganic hybrid structure,” Applied Physics Letters, Vol. 90, No. 26, pp. 262104 (2007).
[118]D. I. Kim, B.U. Hwang, J.S. Park, H.S. Jeon, B.S. Bae, H.J. Lee, and N. E. Lee, “Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors,” Organic Electronics, Vol. 13, No. 11, pp. 2401–2405 (2012).
[119]C. L. Fan, Y. Z. Lin, W. D. Lee, S. J. Wang, and C. H. Huang, “Improved pentacene growth continuity for enhancing the performance of pentacene-based organic thin-film transistors,” Organic Electronics, Vol. 13, No.12, pp. 2924–2928¬ (2012).
[120]C. L. Fan and P. C. Chiu, “Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors by Inserting an Ultrathin Teflon Carrier Injection Layer,” Japanese Journal of Applied Physics, Vol. 50, No. 10, pp. 100203 (2011).
[121]D. W. Chou, C. J. Huang, C. M. Su, C. F. Yang, W. R. Chen, and T. H. Meen, “Effect of rapid thermal annealing on pentacene-based thin-film transistors,” Solid-State Electronics, Vol. 61, No. 1, pp. 76–80 (2011).
[122]I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “Patterning pentacene organic thin film transistors,” Journal of Vacuum Science and Technology, Vol. 20, No. 3, pp. 956 (2002).
[123]S. Y. Park, T. Kwon, and H. H. Lee, “Transfer Patterning of Pentacene for Organic Thin-Film Transistors,” Advance Materials, Vol. 18, No. 14, pp. 1861–1864 (2006).
[124]Y. Chung, B. Murmann, S. Selvarasah, M. R. Dokmeci, and Z. Bao, “Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks,” Applied Physics Letters, Vol. 96, No. 13, pp. 133306 (2010).
[125]C. C. Kuo and T. N. Jackson, “Direct lithographic top contacts for pentacene organic thin-film transistors,” Applied Physics Letters, Vol. 94, No. 5, pp. 053304 (2009).
[126]C. L. Fan, Y. Z. Lin, Y. Y. Lin, and S. C. Chen, “High performance submicrometer pentacene-based organic thin-film transistor using planar bottom-contact structure,” Organic Electronics, Vol. 14, No. 12, pp. 3147–3151 (2013).
[127]S. Jung, Y. G. Choo, and T. Ji, “Lift-Off Photolithographic Top-Contact OTFTs Using a Bilayer of PVA and SU8” IEEE Electron Device Letters, Vol. 33, No. 4, pp. 603–605 (2012).
[128]H. J. Yang, M. H. Yi, and T. Ahn, “Novel Crosslinked PVA Without Photoinitiator for Organic Passivation Layers of Pentacene Thin-Film Transistors,” Molecular Crystals and Liquid Crystals, Vol. 600, No. 1, pp. 138–145 (2014).
[129]H. J. Suk, M.H. Yi, and T. Ahn, “Thermally Crosslinked Polyvinyl Alcohol (PVA) Layers for the Passivation of Pentacene Thin-Film Transistors,” Molecular Crystals and Liquid Crystals, Vol. 578, No. 1, pp. 111–118 (2013).
[130]R. Yea, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, “Effects of O2 and H2O on electrical characteristics of pentacene thin film transistors,” Thin Solid Films, Vol. 464, pp.437–440 (2004).
[131]D. Simeone, M. Rapisarda, G. Fortunato, A. Valletta, and L. Mariucci, “Influence of structural properties on environmental stability of pentacene thin film transistors,” Organic Electronics, Vo. 12, No. 3, pp. 447–452 (2011).
[132]S. H. Han, J. H. Kim, J. Jang, S. M. Cho, M. H. Oh, S. H. Lee, and D. J. Choo, “Lifetime of organic thin-film transistors with organic passivation layers,” Applied Physics Letters, Vol. 88 No. 7, pp. 073519 (2006).
[133]T. Ahn, H. J. Suk, J. Won, and M. H. Yi, “Extended lifetime of pentacene thin-film transistor with polyvinyl alcohol (PVA)/layered silicate nanocomposite passivation layer,” Microelectronic Engineering, Vol. 86, No. 1, pp. 41–46 (2009).
[134]W. Wang, J. Ying, J. Han, and W. Xie, “High mobility pentacene/C60-based ambipolar OTFTs by thickness optimization of bottom pentacene layer,” IEEE Transactions on Electron Devices, Vol. 61, No. 11, pp. 3845–3851 (2014).
[135]C. Y. Han, W. M. Tang, C. H. Leung, C. M. Che, and P. T. Lai, “A Study on La Incorporation in Transition-Metal (Y, Zr, and Nb) Oxides as Gate Dielectric of Pentacene Organic Thin-Film Transistor,” IEEE Transactions on Electron Devices, Vol. 62, No. 7, pp. 2313–2319 (2015).
[136]B. Stadlober, U. Haas, H. Gold, A. Haase, G. Jakopic, G. Leising, N. Koch, S. Rentenberger, and E. Zojer, “Orders-of-Magnitude Reduction of the Contact Resistance in Short-Channel Hot Embossed Organic Thin Film Transistors by Oxidative Treatment of Au-Electrodes,” Advanced Materials, Vol. 17, No. 15, pp. 2687–2692 (2007).
[137]S. H. Jin, K. D. Jung, H. Shin, B. G. Park, and J. D. Lee, “Grain size effects on contact resistance of top-contact pentacene TFTs,” Synthetic Metals, Vol. 156, No. 2, pp. 196–201 (2006).
[138]C. L. Fan, P. C. Chiu, Y. Z. Lin, T. H. Yang, and C. Y. Chiang, “Investigation on the electrical characteristics of a pentacene thin-film transistor and its reliability under positive drain bias stress,” Semiconductor Science and Technology, Vol. 26, No. 12, pp. 125007 (2011).
[139]K. Sidler, N. V. Cvetkovic, V. Savu, D. Tsamados, A. M. Ionescu, and J. Brugger, “Organic thin film transistors on flexible polyimide substrates fabricated by full-wafer stencil lithography,” Sensor and Actuators A: Physical, Vol. 162, No. 2, pp. 155–159 (2010).
電子全文 電子全文(網際網路公開日期:20260802)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊