|
[1]J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, and X. Zhan, “n-Type Organic Semiconductors in Organic Electronics,” Advanced Materials, Vol. 22, No. 34, pp. 3876-3892 (2010). [2]C. L. Fan, Y. Z. Lin, and C. H. Huang, “Combined Scheme of UV/Ozone and HMDS Treatment on a Gate Insulator for Performance Improvement of a Low-Temperature-Processed Bottom-Contact OTFT,” Semiconductor Science and Technology, Vol. 26, No. 3, pp. 045006-1-045006-5 (2011). [3]T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Flexible Organic Transistors and Circuits with Extreme Bending Stability,” Nature Materials, Vol. 9, No. 12, pp. 1015-1022 (2010). [4]A. C. Mayer, M. T. Lloyd, D. J. Herman, T. G. Kasen, and G. G. Malliaras, “Postfabrication Annealing of Pentacene-Based Photovoltaic Cells,” Applied Physics Letters, Vol. 85, No. 25, pp. 6272-6274 (2004). [5]C. C. Lee, C. H. Yuan, S. W. Liu, and Y. S. Shih, “Efficient Deep Blue Organic Light-Emitting Diodes Based on Wide Band Gap 4-Hydroxy-8-Methyl-1.5-Naphthyridine Aluminum Chelate as Emitting and Electron Transporting Layer,” Journal of Display Technology, Vol. 7, No. 8, pp. 454-458 (2011). [6]C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Advanced Materials, Vol. 14, No. 2, pp. 99-117 (2002). [7]A. Tsumura, K. Koezuka, and T. Ando, “Macromolecular Electronic Device: Field-Effect Transistor with a Polythiophene Thin Film,” Applied Physics Letters, Vol. 49, No. 18, pp. 1210–1212 (1986). [8]G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, and F. Garnier, “A Field-Effect Transistor Based on Conjugated Alpha-Sexithienyl,” Solid State Communications, Vol. 72, No. 4, pp. 381–384 (1989). [9]J. M. Shaw, and P. F. Seidler, “Organic Electronics: Introduction,” IBM Journal of Research and Development, Vol. 45, No. 1, pp. 3–9 (2001). [10]C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic Thin-Film Transistor-Driven Polymer-Dispersed Liquid Crystal Displays on Flexible Polymeric Substrates,” Applied Physics Letters, Vol. 80, No. 6, pp. 1088–1090 (2006). [11]M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita, “Flexible AM OLED Panel Driven by Bottom-Contact OTFTs,” IEEE Electron Device Letters, Vol. 27, No. 4, pp. 249–251 (2006). [12]R. Wisnieff, “Display Technology: Printing Screens,” Nature, Vol. 394, No. 6690, pp. 225–227 (1998). [13]R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M. Grigas, K. Dimmlerb, O. Shchekin, and A. Dodabalapur, “Radio Frequency Rectifiers Based on Organic Thin-Film Transistors,” Applied Physics Letters, Vol. 88, No. 12, pp. 123502–123502-3 (2006). [14]T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A Large-Area, Flexible Pressure Sensor Matrix with Organic Field-Effect Transistors for Artificial Skin Applications,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, No. 27, pp. 9966–9970 (2004). [15]G. Horowitz, “Organic Thin Film Transistors: From Theory to Real Devices,” Journal of Materials Research, Vol. 19, No. 7, pp. 1946–1962 (2004). [16]S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, and W. K. Kim, “High-Performance Polymer TFTs Printed on a Plastic Substrate,” IEEE Transactions on Electron Devices, Vol. 49, No. 11, pp. 2008–2015 (2002). [17]S. Locci, M. Morana, E. Orgiu, A. Bonfiglio, and P. Lugli, “Modeling of Short-Channel Effects in Organic Thin-Film Transistors,” IEEE Transactions on Electron Devices, Vol. 55, No. 10, pp. 2561–2567 (2008). [18]B. Kumar, B. K. Kaushik, and Y. S. Negi, “Perspectives and Challenges for Organic Thin Film Transistors: Materials, Devices, Processes and Applications,” Journal of Materials Science: Materials in Electronics, Vol. 25, No. 1, pp. 1–30 (2014). [19]B. C. Shekar, J. Lee, and S. W. Rhee, "Organic Thin Film Transistors: Materials, Processes and Devices," Korean Journal of Chemical Engineering, Vol. 21, No. 1, pp. 267–285 (2004). [20]J. H. Schon, “New Phenomena in High Mobility Organic Semiconductors,” Physica Status Solidi (b), Vol. 226, No. 2, pp. 257–270 (2001). [21]J. H. Schon, and B. Batlogg, “Trapping in Organic Field-Effect Transistors,” Journal of Applied Physics, Vol. 89, No. 1, pp. 336–342 (2001). [22]G. Horowitz, “Organic Field-Effect Transistors,” Advanced Materials, Vol. 10, No. 5, pp. 365–377 (1998). [23]T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, “Charge Injection Process in Organic Field-Effect Transistors,” Applied Physics Letters, Vol. 91, No. 5, pp. 053508-1–053508-3 (2007). [24]S. Schiefer, M. Huth, A. Dobrinevski, and B. Nickel, “Determination of the Crystal Structure of Substrate-Induced Pentacene Polymorphs in Fiber Structured Thin Films,” Journal of the American Chemical Society, Vol. 129, No. 34, pp. 10316–10317 (2007). [25]J. R. Brews, K. K. Ng, and R. K. Watts, Submicron Integrated Circuits, John Wiley and Sons, NY, pp. 9–86 (1989). [26]H. W. Zan, K. H. Yen, P. K. Liu, K. H. Ku, C. H. Chen, and J. Hwang, “Low-Voltage Organic Thin Film Transistors with Hydrophobic Aluminum Nitride Film as Gate Insulator,” Organic Electronics, Vol. 8, No. 4, pp. 450–454 (2007). [27]A. Lodha and R. Singh, “Prospects of Manufacturing Organic Semiconductor-Based Integration Circuits,” IEEE Transactions on Semiconductor Manufacturing, Vol. 14, No. 3, pp. 281–296 (2001). [28]K. Shibata, K. Ishikawa, H. Takezoe, H. Wada, and T Mori, “Contact Resistance of Dibenzotetrathiafulvalene-Based Organic Transistors with Metal and Organic Electrodes,” Applied Physics Letters, Vol. 92, No. 2, pp. 023305-1–023305-3 (2008). [29]N. Takahashi, A. Maeda, K. Uno, E. Shikoh, Y. Yamamoto, H. Hori, Y. Kubozono, and A. Fujiwara, “Output Properties of C60 Field-Effect Transistors with Different Source/Drain Electrodes,” Applied Physics Letters, Vol. 90, No. 8, pp. 083503-1–083503-3 (2007). [30]H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact Resistance in Organic Thin-Film Transistors,” Solid-State Electronics, Vol. 47, No. 2, pp. 297–301 (2003). [31]J. Park, J. M. Kang, D. W. Kim, and J. S. Choi, “Contact Resistance Variation in Top-Contact Organic Thin-Film Transistors with the Deposition Rate of Au Source/Drain Electrodes,” Thin Solid Films, Vol. 518, No. 22, pp. 6232–6235 (2010). [32]F. Li, A. Nathan, Y. Wu, and B. S. Ong, Organic thin film transistor integration: A hybrid approach, John Wiley and Sons, NY, pp. 13–49 (2011). [33]Y. Zhou, S. T. Han, Z. X. Xu, and V. A. L. Roy, “Polymer–nanoparticle hybrid dielectrics for flexible transistors and inverters,” Journal of Materials Chemistry, Vol. 22, No. 9, pp. 4060–4065 (2012). [34]C. L. Fan, Y. Z. Lin, P. C. Chiu, S. J. Wang, and W. D. Lee, “Teflon/SiO2 bilayer passivation for improving the electrical reliability of pentacene-based organic thin-film transistors,” Organic Electronics, Vol. 14, No. 9, pp. 2228–2232 ( 2013). [35]H. Y. Chen, I. W. Wu, C. T. Chen, S. W. Liu, and C. I. Wu, “Self-assembled monolayer modification of silver source–drain electrodes for high-performance pentacene organic field-effect transistors,” Organic Electronics, Vol. 13, No. 4, pp. 593–598 (2012). [36]Y. Chung, B. Murmann, S. Selvarasah, M. R. Dokmeci, and Z. Bao, “Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks,” Applied Physics Letters, Vol. 96, No. 13, pp. 133306 (2010). [37]S. K. Lin, Y. C. Li, Y. J. Lin, and Y. H. Wang, “Effects of tri-layer polymer dielectrics on electrical characteristics in pentacene thin film transistors,” ECS Solid State Letters, Vol. 3, No. 7, pp.N19–N22 (2014). [38]L. K. Mao, J. C. Hwang, and J. C. Tsai, “Operation voltage reduction and gain enhancement in organic CMOS inverters with the TTC/gelatin bilayer dielectric,” Organic Electronics, Vol. 16, pp.221–226 (2015). [39]D. I. Kim, B. U. Hwang, J. S. Park, H. S. Jeon, B. S. Bae, H. J. Lee, and N. E. Lee, “Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors,” Organic Electronics, Vol. 13, No. 11, pp. 2401–2405 (2012). [40]Y. Su, M. Wang, F. Xie, J. Chen, W. Xie, N. Zhao, and J. Xu, “In situ modification of low-cost Cu electrodes for high-performance low-voltage pentacene thin film transistors (TFTs),” Organic Electronics, Vol. 14, No. 3, pp. 775–781 (2013). [41]Y. Xu, C. Liu, H. Sun, F. Balestra, G. Ghibaudo, W. Scheideler, and Y. Y. Noh, “Metal evaporation dependent charge injection in organic transistors,” Organic Electronics, Vol. 15, No. 8, pp. 1738–1744 (2014). [42]M. W. Alam, Z. Wang, S. Naka, and H. Okada, “Mobility enhancement of top contact pentacene based organic thin film transistor with bi-layer GeO/Au electrodes,” Applied Physics Letters, Vol. 102, No. 6, pp. 061105 (2013). [43]C. L. Fan and P. C. Chiu, “Performance improvement of top-contact pentacene-based organic thin-film transistors by inserting an ultrathin teflon carrier injection layer,” Japanese Journal of Applied Physics, Vol. 50, No. 10R, pp. 100203 (2011). [44]M. W. Alam, Z. Wang, S. Naka, and H. Okada, “Performance enhancement of top-contact pentacene-based organic thin-film transistors with bilayer WO3/Au electrodes,” Japanese Journal of Applied Physics, Vol. 52, No. 3S, pp. 03BB08 (2013). [45]J. Li, H. P. Lin, F. Zhou, W. Q. Zhu, X. Y. Jiang, and Z. L. Zhang, “Suppression of bias stress-induced degradation of pentacene-TFT using MoOx interlayer,” Current Applied Physics, Vol. 12, No. 1, pp. 280–283 ( 2012). [46]N. Koch, I. Salzmann, R. L. Johnson, J. Pflaum, R. Friedlein, and J. P. Rabe, “Molecular orientation dependent energy levels at interfaces with pentacene and pentacenequinone,” Organic Electronics, Vol. 7, No. 6, pp. 537–545 (2006). [47]H. S. Lee, K. H. Lee, C. H. Park, P. J. Jeon, K. Choi, D. H. Kim, H. R. Kim, G. H. Lee, J. H. Kim, and S. Im, “Ambient-protecting organic light transducer grown on pentacene-channel of photo-gating complementary inverter,” Journal of Materials Chemistry, Vol. 22, No. 10, pp. 4444–4449 (2012). [48]C. L. Fan, T. H. Yang, and P. C. Chiu, “Performance improvement of bottom-contact pentacene-based organic thin-film transistors by inserting a thin polytetrafluoroethylene buffer layer,” Applied Physics Letters, Vol. 97, No. 14, pp. 143306 (2010). [49]J. H. Bae and Y. Choi, “Engineered interface using a hydroxyl group-free polymeric buffer layer onto a TiO2 nanocomposite film for improving the electrical properties in a low-voltage operated organic transistor,” Surface and Interface Analysis, Vol. 44, No. 4, pp. 445–449 (2012). [50]C. L. Fan, W. C. Lin, H. S. Chang, Y. Z. Lin, and B. R. Huang, “Effects of the F4TCNQ-doped pentacene interlayers on performance improvement of top-contact pentacene-based organic thin-film transistors,” Materials, Vol. 9, No. 1, pp. 46 (2016). [51]Y. J. Lin, Y. C. Li, T. C. Wen, L. M. Huang, Y. K. Chen, H. J. Yeh, and Y. H. Wang, “Improvement of transparent organic thin film transistor performance by inserting a lithium fluoride buffer layer,” Applied Physics Letters, Vol. 93, No. 4, pp. 043305 (2008). [52]P. D. Marco, F. Fioriti, F. Bisti, P. Parisse, S. Santucci, and L. Ottaviano, ”Bulk phase two dimensional chiral growth of 6, 13 Pentacenequinone on SiO2,” Journal of Applied Physics, Vol. 109, No. 6, pp. 063508 (2011). [53]I. Salzmann, R. Opitz, S. Rogaschewski, J. P. Rabe, and N. Koch, “Phase separation in vacuum codeposited pentacene/6,13-pentacenequinone thin films,” Physical Review B, Vol. 75, No. 17, pp. 174108 (2007). [54]P. Parisse, F. Bussolotti, M. Passacantando, and L. Ottaviano, “3D island growth of 6,13 pentacenequinone on silicon oxide and gold,” Journal of Non-Crystalline Solid, Vol. 356, No. 37, pp. 2079–2082 (2010). [55]S. H. Jin, K. D. Jung, H. Shin, B. G. Park, and J. D. Lee, “Grain size effects on contact resistance of top-contact pentacene TFTs,” Synthetic Metals, Vol. 156, No. 2, pp. 196–201 (2006). [56]S. K. Lin, Y. C. Li, Y. J. Lin, and Y. H. Wang, “Effects of tri-layer polymer dielectrics on electrical characteristics in pentacene thin-film transistors,” ECS Solid State Letters, Vol. 3, No. 7, pp. N19–N22 (2014). [57]H. Y. Chen, I. W. Wu, C. T. Chen, S. W. Liu, and C. I. Wu, “Self-assembled monolayer modification of silver source-drain electrodes for high-performance pentacene organic field-effect transistors,” Organic Electronics, Vol. 13 No. 4, pp. 593–598 (2012). [58]C. L. Fan, Y. Z. Lin, P. C. Chiu, S. J. Wang, and W. D. Lee, “Teflon/SiO2 bilayer passivation for improving the electrical reliability of pentacene-based organic thin-film transistors,” Organic Electronics, Vol. 14, No. 9, pp. 2228–2232 (2013). [59]Y. Fujisaki, Y. Nakajima, T. Takei, H. Fukagawa, T. Yamamoto, and H. Fujikake, “Flexible active-matrix organic light-emitting diode display using air-stable organic semiconductor of Dinaphtho[2, 3-b: 2’, 3’-f]thieno[3, 2-b]-thiophene,” IEEE Transactions on Electron Devices, Vol. 59, No. 12, pp. 3442–3449 (2012). [60]Y. Su, M. Wang, F. Xie, J. Chen, W. Xie, N. Zhao, J. Xu, “In situ modification of low-cost Cu electrodes for high-performance low-voltage pentacene thin-film transistors (TFTs),” Organic Electronics, Vol. 14. No. 3, pp. 775–781 (2013). [61]Y. Xu, C. Liu, H. Sun, F. Balestra, G. Ghibaudo, W. Scheideler, Y. Y. Noh, “Metal evaporation dependent charge injection in organic transistors,” Organic Electronics, Vol. 15, No. 8, pp. 1738–1744 (2014). [62]C. L. Fan and P. C. Chiu, “Performance improvement of top-contact pentacene-based organic thin-film transistors by inserting an ultrathin Teflon carrier injection layer,” Japanese Journal of Applied Physics, Vol. 50, No. 10, pp. 100203 (2011). [63]M. W. Alam, Z. Wang, S. Naka, and H. Okada, “Mobility enhancement of top contact pentacene based organic thin-film transistor with bi-layer GeO/Au electrodes,” Applied Physics Letters, Vol. 102, No. 6, pp. 061105 (2013). [64]H. Wang, L. Wang, Y. Gao, D. Zhang, and Y. Qiu, “Efficient organic light-emitting diodes with Teflon as buffer layer,” Japanese Journal of Applied Physics, Vol. 43, No. 10, pp. L1353–L1355 (2004). [65]Z. Wu, L. Wang, H. Wang, Y. Gao, and Y. Qiu, “Charge tunneling injection through a thin teflon film between the electrodes and organic semiconductor layer: Relation to morphology of the teflon film,” Physical Review B, Vol. 74, No. 16, pp. 165307–165315 (2006). [66]S. H. Su, C. M. Wu, S. Y. Kung, and M. Yokoyama, “Enhancing the performance of organic thin-film transistors using an organic-doped inorganic buffer layer,” Thin Solid Films, Vol. 536, pp. 229–234 (2013). [67]J. Li, X. W. Zhang, L. Zhang, K. U. Haq, X. Y. Jiang, W. Q. Zhu, and Z. L. Zhang, “Improving organic transistor performance through contact-area-limited doping,” Solid State Communications, Vol. 149, No. 41, pp. 1826–1830 (2009). [68]K. Harada, M. Riede, K. Leo, O. R. Hild, and C. M. Elliott, “Pentacene homojunctions: Electron and hole transport properties and related photovoltaic responses,” Physical Review B, Vol. 77, No. 19, pp. 195212 (2008). [69]C. T. Lee and H. C. Chen, “Performance improvement mechanisms of organic thin-film transistors using MoOx-doped pentacene as channel layer,” Organic Electronics, Vol. 12, No. 11, pp. 1852–1857 (2011). [70]P. Yan, Z. Liu, S. Zhang, D. Liu, X. Wang, S. Yue, and Y. Zhao, “Observation of hole injection boost via two parallel paths in Pentacene thin-film transistors by employing Pentacene: 4,4”-tris(3-methylphenylphenylamino) triphenylamine: MoO3 buffer layer,” APL Materials, Vol. 2, No. 11, pp. 116103 (2014). [71]Y. Wakatsuki, K. Noda, Y. Wada, T. Toyabe, and K. Matsushige, “Molecular doping effect in bottom-gate, bottom-contact pentacene thin-film transistors,” Journal of Applied Physics, Vol. 110, No. 5, pp. 054505 (2011). [72]S. H. Jin, K. D. Jung, H. Shin, B. G. Park, and J. D. Lee, “Grain size effects on contact resistance of top-contact pentacene TFTs,” Synthetic Metals, Vol. 156, No. 2, pp. 196–201 (2006). [73]C. L. Fan, T. H. Yang, and P. C. Chiu, “Performance improvement of bottom-contact pentacene-based organic thin-film transistors by inserting a thin polytetrafluoroethylene buffer layer,” Applied Physics Letters, Vol. 97, No. 14, pp. 143306 (2010). [74]J. H. Bae and Y. Choi, “Engineered interface using a hydroxyl group-free polymeric buffer layer onto a TiO2 nanocomposite film for improving the electrical properties in a low-voltage operated organic transistor,” Surface and Interface Analysis, Vol. 44, No. 4, pp. 445–449 (2012). [75]Y. Zhou, S. T. Han, Z. X. Xu, and V. A. L. Roy, “Polymer-nanoparticle hybrid dielectrics for flexible transistors and inverters,” Journal of Materials Chemistry, Vol. 22, No. 9, pp. 4060–4065 (2012). [76]C. L. Fan, Y. Z. Lin, and C. H. Huang, “Combined scheme of UV/ozone and HMDS treatment on a gate insulator for performance improvement of a low-temperature-processed bottom-contact OTFT,” Semiconductor Science and Technology, Vol. 26, No. 4, pp. 045006 (2011). [77]A. Jedaa and M. Halik, “Toward strain resistant flexible organic thin film transistors,” Applied Physics Letters, Vol. 95, No. 10, pp. 103309 (2009). [78]C. L. Fan, P. C. Chiu, and C. C. Lin, “Low-temperature-deposited SiO2 gate insulator with hydrophobic methyl groups for bottom-contact organic thin-film transistors,” IEEE Electron Device Letters, Vol. 31, No. 12, pp. 1485–1487 (2010). [79]Y. Chung, B. Murmann, S. Selvarasah, M. R. Dokmeci, and Z. Bao, “Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks,” Applied Physics Letters, Vol. 96, No. 13, pp. 133306 (2010). [80]T. Sekitani, and T. Someya, “Air-Stable Operation of Organic Field-Effect Transistors on Plastic Films Using Organic/Metallic Hybrid Passivation Layers,” Japanese Journal of Applied Physics, Vol. 46, No. 7, pp. 4300–4306 (2007). [81]C. L. Fan, P. C. Chiu, Y. Z. Lin, T. H. Yang, and C. Y. Chiang, “Investigation on the electrical characteristics of a pentacene thin-film transistor and its reliability under positive drain bias stress,” Semiconductor Science and Technology, Vol. 26, No. 12, pp. 125007 (2011). [82]J. Park, X. Zhang, M. H. Bae, G. T. Park, and J. H. Bae, “Fringe Field Effect on Electrical Characteristics of Pentacene Thin-Film Transistors,” Japanese Journal of Applied Physics, Vol. 52, No. 11, pp. 111602 (2013). [83]Y. G. Seol, H. Y. Noh, S. S. Lee, J. H. Ahn, and N. E. Lee, “Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistors,” Applied Physics Letters, Vol. 93. No. 1, pp. 013305 (2008). [84]R. Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, “Effects of O2 and H2O on electrical characteristics of pentacene thin film transistors,” Thin Solid Films, Vol. 464, pp. 437–440 (2004). [85]F. Werkmeister, and B. Nickel, “Towards flexible organic thin film transistors (OTFTs) for biosensing,” Journal of Materials Chemistry B, Vol. 1, No. 31, pp. 3830–3835 (2013). [86]H. S. Tan, S. R. Kulkarni, T. Cahyadi, P. S. Lee, and S. G. Mhaisalkar, “Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors ,” Applied Physics Letters, Vol. 93, No. 18, pp. 183503 (2008). [87]H. Y. Noh, Y. G. Seol, S. I. Kim, and N. E. Lee, “Mechanically Flexible Low-Leakage Nanocomposite Gate Dielectrics for Flexible Organic Thin-Film Transistors,” Electrochemical and Solid State Letters, Vol. 11, No. 8, pp. H218–H221 (2008). [88]Y.G. Seol, N. E. Lee, S. H. Park, and J. Y. Bae, “Improvement of mechanical and electrical stabilities of flexible organic thin film transistor by using adhesive organic interlayer,” Organic Electronics, Vol. 9, No. 3, pp. 413–417 (2008). [89]T. Koniger, and H. Munstedt, “Influence of polyvinylpyrrolidone on properties of flexible electrically conducting indium tin oxide nanoparticle coatings,” Journal of Materials Science, Vol. 44, No. 11, pp. 2736–2742 (2009). [90]Y. G. Seol, W. Heo, J. S. Park, N. E. Lee, D. K. Lee, and Y. J. Kim, “Improvement of Mechanical and Electrical Stability of Flexible Organic Field-Effect Transistors by Multistack Hybrid Encapsulation,” Journal of The Electrochemical Society, Vol. 158, No. 9, pp. H931–H936 (2011). [91]Y. Zhou, S. T. Han, Z. X. Xu, and V. A. L. Roy, “Polymer–nanoparticle hybrid dielectrics for flexible transistors and inverters,” Journal of Materials Chemistry, Vol. 22, No. 9, pp. 4060–4065 (2012). [92]T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Flexible organic transistors and circuits with extreme bending stability,” Nature Mayerials, Vol. 9, pp. 1015–1022 (2010). [93]T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, and T. Someya, “Ultraflexible organic field-effect transistors embedded at a neutral strain position,” Applied Physics Letters, Vol. 87, No. 17, pp. 1–3 (2005). [94]T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, and T. Sakurai, and T. Someya, “Submillimeter radius bendable organic field-effect transistors,” Journal of Non-Crystalline Solids, Vol. 352, No. 9, pp. 1769–1773 (2006). [95]Y. G. Seol, J. G. Lee, and N. E. Lee, “Effects of different electroplated gate electrodes on electrical performances of flexible organic thin film transistor and flexibility improvement,” Organic Electronics, Vol. 8, No. 5, pp. 513–521 (2007). [96]H. Y. Noh, Y. G. Seol, and N. E. Lee, “Improved electrical stability in cyclically bent organic thin film transistors with nanocomposite gate dielectrics and surface passivation,” Applied Physics Letters, Vol. 95, No.11, pp. 113302 (2009). [97]Y. Fujisaki, H. Sato, H. Fujikake, Y. Inoue, S. Tokito, and T. Kurita, “Liquid Crystal Display Cells Fabricated on Plastic Substrate Driven by Low-Voltage Organic Thin-Film Transistor with Improved Gate Insulator and Passivation Layer,” Japanese Journal of Applied Physics, Vol. 44, No. 6, pp. 3728–3732 (2005). [98]T. Sekitani, Y. Kato, S. Iba, H. Shinaoka, and T. Someya, “Bending experiment on pentacene field effect transistors on plastic films,” Applied Physics Letters, Vol. 86, No. 7, pp. 1–3 (2005). [99]C. Yang, J. Yoon, S. H. Kim, K. Hong, and D. S. Chung, “Bending-stress-driven phase transitions in pentacene thin films for flexible organic field-effect transistors,” Applied Physics Letters, Vol. 92, No. 24, pp. 243305 (2008). [100]D.I. Kim, B.U. Hwang, J.S. Park, H.S. Jeon, B.S. Bae, H.J. Lee, and N. E. Lee, “Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors,” Organic Electronics, Vol. 13, No. 11, pp. 2401–2405 (2012). [101]M. Kanari, M. Kunimoto, T. Wakamatsu, and I. Ihara, “Critical bending radius and electrical behaviors of organic field effect transistors under elastoplastic bending strain,” Thin Solid Films, Vol. 518, No. 10, pp. 2764–2768 (2010). [102]Y. G. Seol, J. S. Park, N. T. Tien, N. E. Lee, D. K. Lee, S. C. Lee, Y. J. Kim, C. S. Lee, and H. Kim, “Reduction of Electrical Hysteresis in Cyclically Bent Organic Field Effect Transistors by Incorporating Multistack Hybrid Gate Dielectrics,” Journal of The Electrochemical Society, Vol. 157, No. 11, pp. H1046–H1050 (2010). [103]H. W. Zan, and T. Y. Hsu, “Stable Encapsulated Organic TFT With a Spin-Coated Poly(4-Vinylphenol-Co-Methyl Methacrylate) Dielectric,” IEEE Electron Device Letters, Vol. 32, No. 8, pp. 1131–1133 (2011). [104]C. L. Fan, Y. Z. Lin, P. C. Chiu, S. J. Wang, and W. D. Lee, “Teflon/SiO2 bilayer passivation for improving the electrical reliability of pentacene-based organic thin-film transistors,” Organic Electronics, Vol. 14, No. 9, pp. 2228–2232 (2013). [105]J. Park, J. H. Bae, W. H. Kim, M. H. Kim, C. M. Keum, S. D. Lee, and J. S. Choi, “Effects of Interfacial Charge Depletion in Organic Thin-Film Transistors with Polymeric Dielectrics on Electrical Stability,” Materials, Vol. 3, No. 6, pp. 3614–3624 (2010). [106]B. Kumar, B. K. Kaushik, and Y. S. Negi, “Static and dynamic characteristics of dual gate organic TFT based NAND and NOR circuits,” Journal of Computational Electronics, Vol. 13, No. 3, pp. 627–638 (2014). [107]P. Cosseddu, S. Lai, G. Casula, L. Raffo, and A. Bonfiglio, “High performance, foldable, organic memories based on ultra-low voltage, thin film transistors,” Organic Electronics, Vol. 15, No. 12, pp. 3595–3600 (2014). [108]F. Yin, Z. Xu, S. Zhao, F. Zhang, Y. Chen, C. Kong, W. Gong, and X. Xu, “A DC current–voltage model for organic thin film transistor for circuit design,” Optik, Vol. 125, No. 1, pp. 257–259 (2014). [109]C. Y. Han, W. M. Tang, C. H. Leung, C. M. Che, and P. T. Lai, “High-Performance Pentacene Thin-Film Transistor With High-K HfLaON as Gate Dielectric,” IEEE Electron Device Letters, Vol. 34, No. 11, pp. 1397–1399 (2013). [110]F. Adriyanto, C. K. Yang, T. Y. Yang, C. Y. Wei, and Y. H. Wang, “Solution-Processed Barium Zirconate Titanate for Pentacene-Based Thin-Film Transistor and Memory,” IEEE Electron Device Letters, Vol. 34, No. 10, pp. 1241–1243 (2013). [111]C. L. Fan, W. C. Lin, H. H. Peng, Y. Z. Lin, and B. R. Huang, “Correlation between ambient air and continuous bending stress for the electrical reliability of flexible pentacene-based thin-film transistors,” Japanese Journal of Applied Physics, Vol. 54, No. 1, pp. 011602 (2015). [112]L. Feng, J. Zhao, W. Tang, X. Xu, and X. Guo, “Solution Processed Organic Thin-Film Transistors With Hybrid Low/High Voltage Operation,” Journal of Display Technology, Vol. 10, No. 11, pp. 971–974 (2014). [113]W. Wang, J. Ying, J. Han, and W. Xie, “High Mobility Pentacene/C60-Based Ambipolar OTFTs by Thickness Optimization of Bottom Pentacene Layer,” IEEE Transactions on Electron Devices, Vol. 61, No. 11, pp. 3845–3851 (2014). [114]A. T. Zocco, H. You, J. A. Hagen, and A. J. Steckl, “Pentacene organic thin-film transistors on flexible paper and glass substrates,” Nanotechnology, Vol. 25, No. 9, pp. 094005 (2014). [115]F. Zanella, N. Marjanovic, R. Ferrini, H. Gold, A. Haase, A. Fian, B. Stadlober, R. Müller, J. Genoe, H. Hirshy, A. Drost, M. König, K. D. Lee, J. Ring, R. Prétôt, C.C. Enz, and J. M. Sallese, “Design and modeling of self-aligned nano-imprinted sub-micrometer pentacene-based organic thin-film transistors,” Organic Electronics, Vol. 14, No. 11, pp. 2756–2761 (2013). [116]L. K. Mao, J. C. Hwang, and J. C. Tsai, “Operation voltage reduction and gain enhancement in organic CMOS inverters with the TTC/gelatin bilayer dielectric,” Organic Electronics, Vol. 16, pp. 221–226 (2015). [117]H. Nakanotani, M. Yahiro, and C. Adachi, “Ambipolar field-effect transistor based on organic-inorganic hybrid structure,” Applied Physics Letters, Vol. 90, No. 26, pp. 262104 (2007). [118]D. I. Kim, B.U. Hwang, J.S. Park, H.S. Jeon, B.S. Bae, H.J. Lee, and N. E. Lee, “Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors,” Organic Electronics, Vol. 13, No. 11, pp. 2401–2405 (2012). [119]C. L. Fan, Y. Z. Lin, W. D. Lee, S. J. Wang, and C. H. Huang, “Improved pentacene growth continuity for enhancing the performance of pentacene-based organic thin-film transistors,” Organic Electronics, Vol. 13, No.12, pp. 2924–2928¬ (2012). [120]C. L. Fan and P. C. Chiu, “Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors by Inserting an Ultrathin Teflon Carrier Injection Layer,” Japanese Journal of Applied Physics, Vol. 50, No. 10, pp. 100203 (2011). [121]D. W. Chou, C. J. Huang, C. M. Su, C. F. Yang, W. R. Chen, and T. H. Meen, “Effect of rapid thermal annealing on pentacene-based thin-film transistors,” Solid-State Electronics, Vol. 61, No. 1, pp. 76–80 (2011). [122]I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “Patterning pentacene organic thin film transistors,” Journal of Vacuum Science and Technology, Vol. 20, No. 3, pp. 956 (2002). [123]S. Y. Park, T. Kwon, and H. H. Lee, “Transfer Patterning of Pentacene for Organic Thin-Film Transistors,” Advance Materials, Vol. 18, No. 14, pp. 1861–1864 (2006). [124]Y. Chung, B. Murmann, S. Selvarasah, M. R. Dokmeci, and Z. Bao, “Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks,” Applied Physics Letters, Vol. 96, No. 13, pp. 133306 (2010). [125]C. C. Kuo and T. N. Jackson, “Direct lithographic top contacts for pentacene organic thin-film transistors,” Applied Physics Letters, Vol. 94, No. 5, pp. 053304 (2009). [126]C. L. Fan, Y. Z. Lin, Y. Y. Lin, and S. C. Chen, “High performance submicrometer pentacene-based organic thin-film transistor using planar bottom-contact structure,” Organic Electronics, Vol. 14, No. 12, pp. 3147–3151 (2013). [127]S. Jung, Y. G. Choo, and T. Ji, “Lift-Off Photolithographic Top-Contact OTFTs Using a Bilayer of PVA and SU8” IEEE Electron Device Letters, Vol. 33, No. 4, pp. 603–605 (2012). [128]H. J. Yang, M. H. Yi, and T. Ahn, “Novel Crosslinked PVA Without Photoinitiator for Organic Passivation Layers of Pentacene Thin-Film Transistors,” Molecular Crystals and Liquid Crystals, Vol. 600, No. 1, pp. 138–145 (2014). [129]H. J. Suk, M.H. Yi, and T. Ahn, “Thermally Crosslinked Polyvinyl Alcohol (PVA) Layers for the Passivation of Pentacene Thin-Film Transistors,” Molecular Crystals and Liquid Crystals, Vol. 578, No. 1, pp. 111–118 (2013). [130]R. Yea, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, “Effects of O2 and H2O on electrical characteristics of pentacene thin film transistors,” Thin Solid Films, Vol. 464, pp.437–440 (2004). [131]D. Simeone, M. Rapisarda, G. Fortunato, A. Valletta, and L. Mariucci, “Influence of structural properties on environmental stability of pentacene thin film transistors,” Organic Electronics, Vo. 12, No. 3, pp. 447–452 (2011). [132]S. H. Han, J. H. Kim, J. Jang, S. M. Cho, M. H. Oh, S. H. Lee, and D. J. Choo, “Lifetime of organic thin-film transistors with organic passivation layers,” Applied Physics Letters, Vol. 88 No. 7, pp. 073519 (2006). [133]T. Ahn, H. J. Suk, J. Won, and M. H. Yi, “Extended lifetime of pentacene thin-film transistor with polyvinyl alcohol (PVA)/layered silicate nanocomposite passivation layer,” Microelectronic Engineering, Vol. 86, No. 1, pp. 41–46 (2009). [134]W. Wang, J. Ying, J. Han, and W. Xie, “High mobility pentacene/C60-based ambipolar OTFTs by thickness optimization of bottom pentacene layer,” IEEE Transactions on Electron Devices, Vol. 61, No. 11, pp. 3845–3851 (2014). [135]C. Y. Han, W. M. Tang, C. H. Leung, C. M. Che, and P. T. Lai, “A Study on La Incorporation in Transition-Metal (Y, Zr, and Nb) Oxides as Gate Dielectric of Pentacene Organic Thin-Film Transistor,” IEEE Transactions on Electron Devices, Vol. 62, No. 7, pp. 2313–2319 (2015). [136]B. Stadlober, U. Haas, H. Gold, A. Haase, G. Jakopic, G. Leising, N. Koch, S. Rentenberger, and E. Zojer, “Orders-of-Magnitude Reduction of the Contact Resistance in Short-Channel Hot Embossed Organic Thin Film Transistors by Oxidative Treatment of Au-Electrodes,” Advanced Materials, Vol. 17, No. 15, pp. 2687–2692 (2007). [137]S. H. Jin, K. D. Jung, H. Shin, B. G. Park, and J. D. Lee, “Grain size effects on contact resistance of top-contact pentacene TFTs,” Synthetic Metals, Vol. 156, No. 2, pp. 196–201 (2006). [138]C. L. Fan, P. C. Chiu, Y. Z. Lin, T. H. Yang, and C. Y. Chiang, “Investigation on the electrical characteristics of a pentacene thin-film transistor and its reliability under positive drain bias stress,” Semiconductor Science and Technology, Vol. 26, No. 12, pp. 125007 (2011). [139]K. Sidler, N. V. Cvetkovic, V. Savu, D. Tsamados, A. M. Ionescu, and J. Brugger, “Organic thin film transistors on flexible polyimide substrates fabricated by full-wafer stencil lithography,” Sensor and Actuators A: Physical, Vol. 162, No. 2, pp. 155–159 (2010).
|