|
BIBLIOGRAPHY
[1] G. E. Moore, "Progress in digital integrated electronics," Electron Devices Meeting, vol. 21, 1975. [2] K. Fischer, M. Agostinelli, C. Allen, D. Bahr, et al, "Low-k interconnect stack with multi-layer air gap and tri-metal-insulator-metal capacitors for 14nm high volume manufacturing," in IEEE IITC/MAM Conf., 2015, pp. 5-8. [3]B. J. Lin, "Making lithography work for the 7-nm node and beyond in overlay accuracy, resolution, defect, and cost," Microelectron. Eng., vol. 143, pp. 91-101, Aug. 2015. [4](2015). International Technology Roadmap for Semiconductor. Available: http://www/itrs.net/ [5] M. Asano, T. Ikeda, T. Koike, H. Abe, "Evaluation of producer’s and consumer’s risks in scatterometry and scanning electron microscopy metrology for inline critical dimension metrology," J. Micro/Nanolithogr., MEMS, and MOEMS, vol. 5, no. 4, pp. 043006 1-14, Dec. 2006. [6] Sendelbach, Matthew, N. Sarig, K. Wakamoto, H. K. Kim, et al, "Impact of shrinking measurement error budgets on qualification metrology sampling and cost," in Proc. SPIE Metrology, Inspection, and Process Control for Microlithography XXVIII, 2014, pp. 415-426. [7] P.J. Jiang, H. Chu, D. Wack, "Forward solve algorithms for optical critical dimension metrology," in Proc. SPIE Metrology, Inspection, and Process Control for Microlithography XXII, 2008, pp. 69221O. [8] S. A. Coulombe, B. K. Minhas, C. J. Raymond, S. S. H. Naqvi, J. R. McNeill, "Scatterometry measurement of sub-0.1 μm linewidth gratings," J. Vac. Sci. Technol. B, vol. 16, no. 1, pp. 80-87, 1998. [9] X. Niu, N. Jakatdar, J. Bao, C. J. Spanos, "Specular spectroscopic scatterometry," IEEE Trans. Semicond. Manuf., vol. 14, no. 2, pp. 97-111, May 2001. [10] R. M. Al-Assaad, S. Reginda, L. Tao, S. W. Pang, "Characterizing nanoimprint profile shape and polymer flow behavior using visible light angular scatterometry," J. Vac. Sci. Technol. B, vol. 25, no. 6, pp. 2396-2401, 2007. [11] M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, et al, "Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives," J. Nanopart. Res., vol. 11, no. 7, pp. 1521-1554, 2009. [12]G. V. Zhuang, S. Spielman, J. Fielden, D. C. Wack, L. Poslavsky, B. D. Bunday, "Dark-field optical scatterometry for line-width-roughness metrology," in Proc. SPIE Metrology, Inspection, and Process Control for Microlithography XXIII, 2009, pp. 72720L 1-12. [13] B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, J. R. McNeil, "Ellipsometric scatterometry for the metrology of sub-0.1-μm-linewidth structures," Appl. Opt., vol. 37, no. 22, pp. 5112-5115, Aug. 1998. [14] P. Boher, J. Petit, T. Leroux, J. Foucher, et al, "Optical Fourier transform scatterometry for LER and LWR metrology," in Proc. SPIE Metrology, Inspection, and Process Control for Microlithography XIX, 2005, pp. 192-203. [15] V. F. Paz, S. Peterhansel, K. Frenner, W. Osten, et al, "Depth sensitive Fourier-Scatterometry for the characterization of sub-100 nm periodic structures,” in Proc. SPIE Modeling Aspects in Optical Metrology III, 2011, pp 80830M 1-9. [16] V. F. Paz, A. Peterhansel, K. Frenner, W. Osten, "Solving the inverse grating problem by white light interference Fourier scatterometry," Light: Sci. Appl. 1, e36, Nov. 2012. [17]N. Kumar, O. El. Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, et al, "Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology," in Proc. SPIE Metrology, Inspection, and Process Control for Microlithography XXVI, 2012, pp. 83240Q 1-8. [18]N. Kumar, O. El, Gawhary, S. Roy, S. F. Pereira, et al, "Phase information in coherent Fourier scatterometry," in Proc. SPIE Optical Measurement Systems for Industrial Inspection VIII, 2013, pp. 87881P 1-8. [19]S. Roy, A. C. Assafrao, S. F. Pereira, H. P. Urbach, "Coherent Fourier scatterometry for detection of nanometer-sized particles on a planar substrate surface," Opt. Express, vol. 22, no.11, pp. 13250-13262, May 2014. [20]J. Endress, N, Kumar, P. Petrik, M. -A. Henn, et al, "Measurement comparison of goniometric scatterometry and coherent fourier scatterometry," in Proc. SPIE Optical Micro- and Nanometrology V, 2014, pp 913208 1-9. [21]O. El. Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, H. P. Urbach, "Performance analysis of coherent optical scatterometry," Appl. Phys. B, vol. 105, no. 4, pp. 775-781, Dec. 2011. [22]N. Kumar, P. Petrik, G. K. P. Ramanandan, O. El. Gawhary, et al, "Reconstruction of sub-wavelength features and nano-positioning of gratings using coherent Fourier scatterometry," Opt. Express, vol. 22, no. 20, pp. 24678-24688, Oct. 2014. [23] R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, et al, "Fundamental limits of optical critical dimension metrology: a simulation study," in Proc. SPIE Metrology, Inspection, and Process Control for Microlithography XXI, 2007, pp. 65180U 1-17. [24] C. J. Raymond, M. R. Murnane, S. L. Prins, S. Sohail, et al, "Multiparameter grating metrology using optical scatterometry," J. Vac. Sci. Technol. B, vol. 15, no. 2, pp. 361-368, Mar. 1997. [25]E. M. Drege, and D. M. Byrne, "Lithographic process monitoring using diffraction measurements," in Proc. SPIE Metrology, Inspection, and Process Control for Microlithography XIV, 2000, pp. 147-157. [26] E. M. Drege, R. M. Al-Assad, D. M. Byrne, "Mathematical analyses of inverse scatterometry," in Proc. SPIE Metrology, Inspection, and Process Control for Microlithography XVI, 2002, pp. 151-162. [27] R. M. Al-Assad, and D. M. Byrne, "Error analysis in inverse scatterometry. I. Modeling," J. Opt. Soc. Am. A, vol. 24, no. 2, pp. 326-338, Feb. 2007. [28] C. J. Raymond, M. Littau, A. Chuprin, S. Ward, "Comparison of solutions to the scatterometry inverse problem," in Proc. SPIE Metrology, Inspection, and Process Control for Microlithography XVIII, 2004, pp. 564-575. [29] M. A. Henn, H. Gross, F. Scholze, M. Wurn, et al, "A maximum likelihood approach to the inverse problem of scatterometry," Opt. Express, vol. 20, no. 12, pp. 12771-12786, Jun. 2012. [30] M. A. Henn, H. Gross, F. Scholze, C. Elster, M. Bar, "Improved geometry reconstruction and uncertainty evaluation for extreme ultraviolet (EUV) scatterometry based on maximum likelihood estimation," in Proc SPIE Modeling Aspects in Optical Metrology III, 2011, pp. 80830N 1-10. [31] I. Kallioniemi, J. Saarinen, and E. Oja, "Optical scatterometry of subwavelength diffraction gratings: neural-network approach," Appl. Opt., vol. 37, no. 25, pp. 5830-5835, Sep. 1998. [32]I. Kallioniemi, J. Saarinen, and E. Oja, "Characterization of diffraction gratings in a rigorous domain with optical scatterometry: hierarchical neural-network model," Appl. Opt., vol. 38, no. 28, pp. 5920-5930, Oct. 1999. [33]S. Robert, A. Mure-Ravaud, and D. Lacour, "Characterization of optical diffraction gratings by use of a neural method," J. Opt. Soc. Am. A, vol. 19, no. 1, pp. 24-32, Jan. 2002. [34]S. Wei, and L. Li, "Measurement of photoresist grating profiles based on multiwavelength scatterometry and artificial neural network," Appl. Opt., vol. 47, no. 13, pp. 2524-2532, May 2008. [35]I. Gereige, S. Robert, G. Granet, “Optimal architecture of a neural network for a high precision in ellipsometric scatterometry,” in Proc. SPIE Instrumentation, Metrology, and Standards for Nanomanufacturing, 2007, pp. 66480G 1-11. [36]I. Gereige, S. Robert, S. Thiria, F. Badran, et al, "Recognition of diffraction-grating profile using a neural network classifier in optical scatterometry," J. Opt. Soc. Am. A, vol. 25, no. 7, pp. 1661-1667, Jul. 2008. [37]H. G. Lee, E. Schmitt-Weaver, M. S. Kim, S. J. Han, et al, “Virtual overlay metrology for fault detection supported with integrated metrology and machine learning”, in Proc. SPIE Metrology, Inspection, and Process Control for Microlithography, 2015, pp. 94241T 1-6. [38]J. Zhu, S. Liu, C. Zhang, X. Chen, Z. Dong, "Identification and reconstruction of diffraction structures in optical scatterometry using support vector machine method," J. Micro/Nanolithogr., MEMS, and MOEMS, vol. 12, no. 1, pp. 013004 1-10, Mar. 2013. [39]J. Zhu, S. Liu, C. Zhang, X. Chen, Z. Dong, "Identification and reconstruction of diffraction structures in optical scatterometry using support vector machine method," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 12.1, 2013. [40]C. Zhang, S. Liu, T. Shi, Z. Tang, "Fitting-determined formulation of effective medium approximation for 3D trench structures in model-based infrared reflectrometry," J. Opt. Soc. Am. A, vol. 28, no. 2, pp. 263-271, Feb. 2011. [41]X. Chen, S. Liu, C. Zhang, J. Zhu, "Improved measurement accuracy in optical scatterometry using fitting error interpolation based library search," Measurement, vol. 46, no, 8, pp. 2638-2646, Oct. 2013. [42]S. Liu, "Computational metrology for nanomanufacturing," in Proc. SPIE 6th International Symposium on Precision Mechanical Measurements, 2013, pp. 891606 1-12. [43]Z. Dong, S. Liu, X. Chen, C. Zhang, "Determination of an optimal measurement configuration in optical scatterometry using global sensitivity analysis," Thin Solid Films, vol. 562, pp. 16-23, Jul. 2014. [44]J. Zhu, S. Liu, X. Chen, C. Zhang, H. Jiang, "Robust solution to the inverse problem in optical scatterometry," Optics Express, vol. 22.18, 2014. [45]J. Zhu, H. Jiang, Y. Shi, C. Zhang, X. Chen, S liu, "Fast and accurate solution of inverse problem in optical scatterometry using heuristic search and robust correction," J. Vac. Sci. Technol. B, vol. 33, no. 3, pp. 031807 1-9, Jun. 2015. [46]M. J. L. Orr, “Regularisation in the selection of radial basis function centres”, Neural Comput., vol. 7, no. 3, pp. 606-623, Apr. 1995. [47]G.B. Huang, P. Saratchandran, N. Sundararajan, "A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation," IEEE Trans. Neural Network, vol. 16.1, 2005. [48]S. F. Su, C. C. Chuang, C. W. Tao, J. T. Jeng, C. C. Hsiao, "Radial basis function networks with linear interval regression weights for symbolic interval data," IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol. 42, no. 1, pp. 69-80, Feb. 2012. [49]A. Alexandridis, E. Chondrodima, E. Efthimiou, G. Papadakis, F. Vallianatos, D. Triantis, "Large earthquake occurrence estimation based on radial basis function neural networks," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5443-5253, Sep. 2014. [50]A. Rubio-Solis, and G. Panoutsos, "Interval type-2 radial basis function neural network: A modeling framework." IEEE Trans. Fuzzy Syst., vol. 23.2, 2015. [51]K. Ganapathy, V. Vaidehi, and J. B. Chandrasekar, "Optimum steepest descent higher level learning radial basis function network," Expert Syst. Appl., vol. 42.21, 2015. [52]M. Sendelbach, A. Vaid, P. Herrera, T. Dzuira, M. Zhang, A. Srivatsa, "Use of multiple azimuthal angles to enable advanced scatterometry applications," in Proc. of SPIE Metrology, Inspection, and Process Control for Microlithography, 2010, pp. 76381G 1-11. [53]S. Zhangooie, J. Li, K. Boinapally, P. Wilkens, A. Ver, et al, "Enhanced optical CD metrology by hybridization and azimuthal scatterometry," in Proc. of SPIE Metrology, Inspection, and Process Control for Microlithography, 2014, pp. 90501G 1-10. [54]S. S. Haykin, Neural Networks and Learning Machines, 2009, Prentice-Hall. [55]A. Tarantola, Inverse Problem Theory and Method for Model Parameter Estimation, 2005, SIAM. [56]J. W. Goodman, Introduction to Fourier Optics, 2005, McGraw-Hill. [57]M. G. M. M. van Kraaij, Forward Diffraction Modelling: Analysis and Application to Grating Reconstruction, 2011, Eindhoven: Technische Universiteit Eindhoven. [58]B. E. A. Saleh, M. C. Teich, Fundamental of Photonics, 2007, Wiley.
|