跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/05 00:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林蔚同
研究生(外文):Wei-Tong Lin
論文名稱:未知信號估測技術應用在側傾車輛狀態估測之研究
論文名稱(外文):Research of Applying Unknown Input Filtering to Rolling Vehicle State Estimation
指導教授:徐勝均
指導教授(外文):Sendren Sheng-Dong Xu
口試委員:徐勝均
口試委員(外文):Sendren Sheng-Dong Xu
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:自動化及控制研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:卡曼濾波器未知訊號濾波器車輛參數估測
外文關鍵詞:Kalman Filterunknown input filtervehicle parameter estimation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討在路面不平滑狀況下,系統能估測出車輛在行駛彎道時之各參數,其參數包含了車輛側滑角(sideslip angle)、車輛側傾角(roll angle)、車輛偏航角(yaw angle)和道路坡度(road angle)等。在一般車輛估測研究中,皆假設無外在輸入干擾,只存在已知輸入輪胎轉向角度,故可用傳統的卡曼濾波器完成估測。本論文假設系統中存在ㄧ未知輸入干擾,且此未知輸入隨著時間而變化,同時前輪因路面因素,造成輪胎剛度素產生一不確定參數,故需應用強健估測器解決此問題。論文一開始先建立車輛動態模型,接著運用兩種不同的量測方程式,搭配三種估測器:最佳連續時間估測器、最佳離散時間狀態估測器和最佳離散時間強健估測器,來完成車輛狀態估測。最後比較不同估測器的模擬結果,也說明本研究探討理論之可行性。
This thesis presents methods for the filter estimate of the parameters of a vehicle model while the vehicle is turning on the inclined road. The parameters of the vehicle model include the sideslip angle, roll angle, yaw angle, and road angle. Different from the conventional vehicle estimation, without an unknown input, which could be implemented easily by Kalman Filter, this paper considers the system interfered by a time-varying unknown input. Due to the road condition, there exists an uncertainty in tire cornering stiffness. In order to solve the uncertainty, this paper applies the robust Kalman Filter. This study derives the vehicle dynamic model at first and defines two type of observers. Then, we combine three different estimators including the optimal continuous-time estimator, optimal discrete-time estimator, and optimal discrete-time robust estimator to estimate the vehicle model. Finally, the simulation results for different estimators are compared to demonstrate the feasibility of the discussed theory.
目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iiiv
圖目錄 vi
表目錄 viii
第1章 緒論 1
1.1研究動機與背景 1
1.2文獻回顧 2
1.3論文架構 3
第2章 預備知識 5
2.1 卡曼濾波器 (Kalman Filter)理論 5
2.2擴展描述卡曼濾波器 (Extension of Descriptor Kalman Filter, EDKF) 8
第3章 車輛動態模型 17
3.1 車輛座標系統 17
3.2 車輛系統模型 18
3.3未知信號車輛系統模型 19
3.4 車輛狀態及系統參數估測問題 22
3.5 車輛狀態強健估測問題 23
第4章 車輛狀態估測器設計 25
4.1 最佳連續時間車輛狀態估測器設計 25
4.2 最佳離散時間車輛狀態估測器設計 26
4.3最佳離散時間車輛狀態強健估測器設計 27
第5章 模擬結果 29
5.1 最佳連續時間車輛狀態估測器 (Optimal Continuous-time Vehicle State Estimator) 29
5.2 最佳離散時間車輛狀態估測器y1 (Optimal Discrete-time Vehicle State Estimator y1) 35
5.3 最佳離散時間車輛狀態估測器y2 (Optimal Discrete-time Vehicle State Estimation y2) 42
5.4 最佳離散時間車輛狀態強健估測器y1 (Optimal Discrete-time Vehicle State Robust Estimation y1) 48
5.5最佳離散時間車輛狀態強健估測器y2 (Optimal Discrete-time Vehicle State Robust Estimator y2) 55
5.6 模擬結果分析 61
第6章 結論與未來研究方向 64
6.1結論 64
6.2未來研究方向 64
參考文獻 65
[1]K. B. Singh and S. Sivaramakrishnan, “An adaptive tire model for enhanced vehicle control systems,” SAE Technical Paper, 2015-01-1521, 2015.
[2]M. Moradi and A. Fekih, “A stability guaranteed robust fault tolerant control design for vehicle suspension systems subject to actuator faults and disturbances,” IEEE Trans. Control Systems Technology, vol. 23, no. 3, pp. 1164-1171, 2015.
[3]S. D. Cairano, H. E. Tseng, D. Bernardini, and A. Bemporad, “Vehicle yaw stability control by coordinated active front steering and differential braking in the tire sideslip angles domain,” IEEE Trans. Control Systems Technology, vol. 21, no. 4, pp. 1236-1248, 2013.
[4]G. Buschmann, H.T. Ebner, and W. Kuhn, “Electronic brake force distribution control a sophisticated addition to abs,” SAE Technical Paper, 920646, 1992.
[5]M. Burckhardt, F. Brugger, and A. Faulhaber, “Anti-lock brake system,” U. S. Patent No. US 4861118A (August 8, 1989).
[6]M. Hara, S. Kamio, M. Takao, K. Sakita, and T. Abe, “Traction control system,” U. S. Patent No. US 5018595A (May 28, 1991).
[7]G. P. Campau, A. W. Kingston, R. L. Ferger, T. Weigert, S. Oliveri, B. J. Ganzel, and M. S. Luckevich, “Electronic brake management system with manual fail safe,” U. S. Patent No. US 5941406A August 24, 1999)
[8]R. E. Kalman, “A new approach to linear filtering and prediction problem,” ASME Journal of Basic Engineering, pp. 35-44, 1960.
[9]M. Canale, L. Fagiano, and C. Novara, “A DVS-MHE approach to vehicle side-slip angle estimation,” IEEE Trans. Control Systems Technology, vol. 22, no. 5, pp. 2048-2055, 2014.
[10]S. Lee, M. Jeon, and V. Shin, “Distributed estimation fusion with application to a multisensory vehicle suspension system with time delays,” IEEE Trans. Industrial Electronics, vol. 59, no. 11, pp. 4475-4482, 2012.
[11]K. Nam, H. Fujimoto, and Y. Hori, “Lateral stability control of in-wheel-motor-driven electric vehicles based on sideslip angle estimation using lateral tire force sensors,” IEEE Trans. Vehicular Technology, vol. 61, no. 5, pp. 1972-1985, 2012.
[12]J. H. Yoon and H. Peng, “Robust vehicle sideslip angle estimation through a disturbance rejection filter that integrates a magnetometer with GPS,” IEEE Trans. Intelligent Transportation System, vol. 15, no. 1, pp. 191-204, 2014.
[13]M. Doumiati, A. C. Victorino, A. Charara, and D. Lechner, “Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle,” IEEE. Trans. Mechatronics, vol. 16, no. 4, pp. 601-614, 2011.
[14]C.-S. Hsieh, “A remedy for the performance degradation of the GOUMVF and its application to vehicle state estimation,” National Symposium on System Science and Engineering, pp. 322-324, June 21-23, Kinmen, Taiwan.
[15]A. Rezaeian, R. Zarringhalam, S. Fallah, W. Melek, A. Khajepour, S. K. Chen, N. Moshchuck, and B. Litkohi, “Novel tire force estimation strategy for real-time implementation on vehicle applications,” IEEE Trans. Vehicular Technology, vol. 64, no. 6, pp. 2231-2241, 2015.
[16]S. Taghvaeeyan and R. Rajamani, “The development of vehicle position estimation algorithms based on the use of AMR sensors,” IEEE Trans. Intelligent Transportation System, vol. 13, no. 4, pp. 1845-1854, 2012.
[17]U. Maeder and M. Morai, “Attitude estimation for vehicles with partial inertial measurement,” IEEE Trans. Vehicular Technology, vol. 60, no. 4, pp. 1496-1504, 2011.
[18]C.-S. Hsieh and F. C. Chen, “Optimal solution of the two stage Kalman estimator,” IEEE Trans. Automatic Control, vol. 44, no. 1, pp. 194-199, 2002.
[19]M. B. Ignani, “Separate bias Kalman estimator with bias state noise,” IEEE Trans. Automatic Control, vol. 35, no. 35, pp. 338-341, 1990.
[20]C.-S. Hsieh, “Extension of unbiased minimum-variance input and state estimation for systems with unknown inputs.” Automatica, vol. 45, no. 9, pp. 2149-2153, 2009.
[21]C.-S. Hsieh, “On the global optimality of unbiased minimum-variance state estimation for systems with unknown inputs,” Automatica, vol. 49, no. 4, pp. 708-715, 2010.
[22]C.-S. Hsieh, “State estimation for nonlinear systems with unknown inputs using SDC factorization,” IEEE Region Conference, pp. 1-6, Nov. 1-4, 2015, Macao, China.
[23]C.-S. Hsieh, “State estimation for descriptor systems via the unknown input filtering method,” Automatica, vol. 49, no. 5, pp. 1281-1286, 2013.
[24]C.-S. Hsieh, “Implementation issues of robust state estimation: nominal system reformation approach,” CACS International Automatic Control Conference, pp. 288-293, Dec. 2-4, 2013, Sun Moon Lake, Nantou, Taiwan.
[25]T. A. Brown and D. S. Rhode, “Roll over stability control for an automotive vehicle,” U. S. Patent NO. US 6,263,261 B1 (July 17, 2001).
[26]T. J. Wielenga and M. A. Chace, “A study in rollover prevention using anti-rollover braking,” SAE Technical Paper Series 2000-01-1642, 2000.
[27]M. S. Grewal, “Kalman filtering,” International Encyclopedia of Statistical Science, pp. 705-708, 2014.
[28]C.-S. Hsieh, “Optimal filtering for systems with unknown inputs via the descriptor Kalman filtering method,” Automatica, vol. 47, no. 10, pp. 2313-2318, 2011.
[29]R. Nikoukhah, A. S. Willsky, and B. C. Levy, “Kalman filtering and Riccati equations for descriptor systems,” IEEE Trans. Automatic Control, vol. 37, no. 9, pp. 1325-1342, 2002.
[30]C.-S. Hsieh, “Optimal linear filtering for stochastic descriptor systems with unknown inputs,” IASTED International Conference on Control and Applications, pp. 52-59, June 1-3, 2011, Vancouver, Canada.
[31]T. D. Gillespie, Fundamentals of Vehicle Dynamics, Society of Automotive Engineer, 1992.
[32]Y. Rocard, Dynamic Instability, HarperCollins Distribution Services, 1957.
[33]R. Marino and F. Cinili, “Input-output decoupling control by measurement feedback in four-wheel-active-steering vehicles,” IEEE Conference on Decision and Control, pp.1717-1720, Dec. 13-15, 2006, San Diego, U.S.A.
[34]P. Yih and J. C. Gerdes, “Steer-by-wire for vehicle state estimation and control,” International Conference on Advanced Vehicle Control (AVEC’04), pp. 785-790, Aug. 23-27, 2004. Arnhem, Netherlands.
[35]J. Ryu and J. C. Gerdes, ”Estimation of vehicle roll and road angle,” American Control Conference (ACC), pp.2110-2115, June 30,-July 2, 2004, Boston, U.S.A.
[36]K. Kawashima, Y. Hori, T. Uchida, and S. Oh, “Robust bank angle estimation for rolling stability control on electric vehicle,” IEEE International Workshop on Advanced Motion Control, pp. 448–453, March 21-24, 2010, Nagaoka, Japan.
[37]R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, 1994.
[38]J. Chen and R. J. Patton, “Optimal filtering and robust fault diagnosis of stochastic systems with unknown disturbances,” IEE Proceedings Control Theory and Applications, vol. 143, no. 1, pp. 31-36, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top