跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:袁健豪
研究生(外文):Chien-Hao Yuan
論文名稱:基於T-S模糊之非奇異終端順滑模態控制與其在機械手臂之應用
論文名稱(外文):T–S Fuzzy Based Nonsingular Terminal Sliding Mode Control with Application to Robot
指導教授:徐勝均
指導教授(外文):Sheng-Dong Xu
口試委員:黃正自林紀穎謝劍書
口試委員(外文):Jeng-Tze HuangChi-Ying LinChien-Shu Hsieh
口試日期:2015-10-21
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:自動化及控制研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:59
中文關鍵詞:T-S模糊模型非奇異終端順滑模態控制第二型非奇異終端順滑模態控制
外文關鍵詞:T-S fuzzy modelsNTSMCNNTSMC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文基於T-S模糊模型(T-S fuzzy model)結合非奇異終端順滑模態控制(nonsingular terminal sliding mode control, NTSMC),並將此技術應用在機械手臂的軌跡追蹤控制任務。此種設計方法可以使T-S模糊模型近似原始非線性系統,而大部分系統所使用的參數採取離線方式計算,以減輕即時線上運算的負擔。所應用的非奇異終端順滑模態控制以及第二型非奇異終端順滑模態控制(novel nonsingular terminal sliding mode control, NNTSMC)也保留了傳統順滑模態控制的優點,包括系統響應速度快、簡易建構以及對於系統干擾或模型不確定性具有強健性。與傳統順滑模態控制相比,非奇異終端順滑模態控制與第二型非奇異終端順滑模態控制可以較快速地使系統狀態在有限時間內到達控制目標點。並與相關控制技術所獲得的結果進行性能比較與分析,模擬結果充分的說明了此第二型非奇異終端順滑模態控制技術之優越性。
This thesis studies the Takagi-Sugeno (T–S) fuzzy system designs by using nonsingular terminal sliding mode control (NTSMC). The analytic results are employed to the study of tracking control of a two-link robot. The design schemes can make T-S fuzzy models approximate the original nonlinear system, and most of the T-S parameters can be offline computed to alleviate online computational burden. Both of the nonsingular terminal sliding mode control and novel nonsingular terminal sliding mode control (NNTSMC) can keep the merits of traditional sliding mode control (SMC), including fast response, easy implementation, and robustness to disturbances/uncertainties. In comparison to SMC, both NTSMC and NNTSMC can make the system states faster reach the control objective point on the sliding surface in a finite amount of time. Finally, Simulation results demonstrate the benefits of the proposed scheme.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第1章 簡介 1
1.1 研究背景與動機 1
1.2 論文架構 3
第2章 預備知識 4
2.1 順滑模態控制 4
2.2 終端順滑模態控制 7
2.3 非奇異終端順滑模態控制 9
2.4 第二型非奇異終端順滑模態控制 11
2.5 T-S模糊模型 13
2.6 基於T-S模糊模型之順滑模態控制律設計 15
2.7 基於T-S模糊模型之非奇異終端順滑模態控制律設計 17
2.8 參數選取 19
2.8.1 證明存在唯一三次多項式 21
2.8.2 多項式分析 22
2.8.3 分析結果整理 31
第3章 基於T-S模糊模型的控制器設計 34
3.1 問題描述 34
3.2 建立T-S模糊模型 34
3.3 第二型非奇異終端順滑模態控制律設計 36
第4章 機械手臂之應用 38
4.1 機械手臂模型介紹 38
4.2 T-S模糊模型 40
4.3 模擬結果 43
第5章 結論與未來研究方向 52
5.1 結論 52
5.2 未來研究方向 52
參考文獻 53
[1]C.-S. Tseng, B.-S. Chen, and H.-J. Uang, “Fuzzy tracking control design for nonlinear dynamic systems via T–S fuzzy model,” IEEE Trans. Fuzzy Systems, vol. 9, no. 3, pp. 381–392, Jun. 2001.
[2]D. W. C. Ho and Y. Niu, “Robust fuzzy design for nonlinear uncertain stochastic systems via sliding-mode control,” IEEE Trans. Fuzzy Systems, vol. 15, no. 3, pp. 350-358, 2007.
[3]Y.-W. Liang, S.-D. Xu, D.-C. Liaw, and C. C. Chen, “A study of T-S model-based SMC scheme with application to robot control,” IEEE Trans. Industrial Electronics, vol. 55, no. 11, pp. 3964-3971, 2008.
[4]Y.-W. Liang, S.-D. Xu, and L.-W. Ting, “T-S model-based SMC reliable design for a class of nonlinear control systems,” IEEE Trans. Industrial Electronics, vol. 56, no. 9, pp. 3286-3295, 2009.
[5]J. Zhang, P. Shi, and Y. Xia, “Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties,” IEEE Trans. Fuzzy Systems, vol. 18, no. 4, pp. 700-711, 2010.
[6]Z. Xi, G. Feng, and T. Hesketh, “Piecewise sliding-mode control for T-S fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 19, no. 4, pp. 707-716, 2011.
[7]N. T.-T. Vu, D.-Y. Yu, H.-H. Choi, and J.-W. Jung, “T-S fuzzy-model-based sliding-mode control for surface-mounted permanent-magnet synchronous motors considering uncertainties,” IEEE Trans. Industrial Electronics, vol. 60, no. 10, pp. 4281-4291, 2013.
[8]Q. Gao, G. Feng, Z. Xi, Y. Wang, and J. Qiu, “Robust H∞ control of T-S fuzzy time-delay systems via a new sliding-mode control scheme,”IEEE Trans. Fuzzy Systems, vol. 22, no. 2, pp. 459-465, 2014.
[9]R. A. DeCarlo, S. H. Zak, and G. P. Matthews, “Variable structure control of nonlinear multivariable systems: a tutorial,” Proceedings of the IEEE, vol. 76, pp. 212-232, 1988.
[10]M. Zak, “Terminal attractors for addressable memory in neural networks,” Physics Letters, vol. 133, pp. 218-222, 1988.
[11]S. T. Venkataraman and S. Gulati, “Terminal sliding modes: a new approach to nonlinear control synthesis,” Fifth International Conference on Advanced Robotics, vol. 1, pp. 443-448, 1991.
[12]S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automatica, vol. 41, pp. 1957-1964, 2005.
[13]F. Yong, X. Yu, and Z. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, pp. 2159-2167, 2002.
[14]C.-K. Lin, “Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks,” IEEE Trans. Fuzzy Systems, vol. 14, pp. 849-859, 2006.
[15]K. B. Park and T. Tsuiji, “Terminal sliding mode control of second-order nonlinear uncertain systems,” International Journal of Robust and Nonlinear Control, vol. 9, pp. 769-780, 1999.
[16]V. Utkin and S. Jingxin, “Integral sliding mode in systems operating under uncertainty conditions,” Proceedings of the 35th IEEE Conference on Decision and Control, vol. 4, pp. 4591-4596, 1996.
[17]F. Castanos and L. Fridman, “Analysis and design of integral sliding manifolds for systems with unmatched perturbations,” IEEE Trans. Automatic Control, vol. 51, pp. 853-858, 2006.
[18]J. Liu and F. Sun, “A novel dynamic terminal sliding mode control of uncertain nonlinear systems,” Journal of Control Theory and Applications, vol. 5, pp. 189-193, 2007.
[19]Y. Karayiannidis and Z. Doulgeri, “Model-free robot joint position regulation and tracking with prescribed performance guarantees,” Robotics and Autonomous Systems, vol. 60, pp. 214-226, 2012.
[20]C. P. Bechlioulis and G. A. Rovithakis, “Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance,” IEEE Trans. Automatic Control, vol. 53, pp. 2090-2099, 2008.
[21]R.-J. Wai and Rajkumar Muthusamy, “Fuzzy-Neural-Network inherited sliding-mode control for robot manipulator including actuator dynamics,” IEEE Trans. Neural Networks & Learning Systems, vol. 24, no. 2, pp. 274-287, 2013.
[22]H.-J. Hao, J.-Y Xu, and J. Li, “The study of adaptive control based on fuzzy PID for laser cutting,” IEEE Symposium on Electrical & Electronics Engineering, pp. 316-318, 2012.
[23]T. Zhang, M. Nakamura, S. Goto, and N. Kyura, “Highly accurate contour control of an articulated robot manipulator using a Gaussian neural network,” Industrial Robot-An International Journal, vol. 32, no. 5, pp. 408-418, 2005.
[24]Y. Liu, Y. Cao, and L. Sun, “Accurate and steady control on trajectory tracking for the wafer transfer robot,” Industrial Robot-An International Journal, vol. 37, no. 6, pp. 552-561, 2010.
[25]Z. Zhu, Y. Xia, and M. Fu, “Adaptive sliding mode control for attitude stabilization with actuator saturation,” IEEE Trans. Industrial Electronics, vol. 58, no. 10, pp. 4898-4907, 2011.
[26]Y.-W. Liang, and S.-D. Xu, “Reliable control of nonlinear systems via variable structure scheme,” IEEE Trans. Automatic Control, vol. 51, no. 10, pp. 1721-1726, 2006.
[27]Y. Xia, Z. Zhu, M. Fu, and S. Wang, “Attitude tracking of rigid spacecraft with bounded disturbances,” IEEE Trans. Industrial Electronics, vol. 58, no. 2, pp. 647-659, 2011.
[28]N. K. Lincoln, and S. M. Veres, “Application of discrete time sliding mode control to a spacecraft in 6DoF with parameter identification,” International Journal of Control, vol. 83, no. 11, pp. 2217-2231, 2010.
[29]B. Xiao, Q. Hu, and Y. Zhang, “Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation,” IEEE Trans. Control Systems Technology, vol. 20, no. 6, pp. 1605-1612, 2012.
[30]A. Zhang, Q. Hu, and M. I. Friswell, “Finite-time fault tolerant attitude control for over-activated spacecraft subject to actuator misalignment and faults,” IET Control Theory and Applications, vol. 7, no. 16, pp. 2007-2020, 2013.
[31]M. Zak, “Terminal actuators in neural networks,” Neural Networks, vol. 2, pp. 259-274, 1989.
[32]K.-S. Khoo, Z. Man, and S. Zhao, “Terminal sliding mode control for MIMO T-S fuzzy systems,” International Conference on Information, Communications and Signal Processing, Singapore, Dec. 10-13, 2007.
[33]H. Liu and J.- F. Li, “Terminal sliding mode control for spacecraft formation flying,” IEEE Trans. Aerospace and Electronic Systems, vol. 45, no. 3 pp. 835-846, 2009.
[34]A.-M. Zou, K.-D. Kumar, Z.-G. Hou, and X. Liu, “Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network,” IEEE Trans. Man, and Cybernetics Systems, Part B, vol. 41, no. 4, pp. 950-963, 2011.
[35]Z. Lin, X. Yan, Y. Hao, and Z. Su, “Fault tolerant control for spacecraft based on adaptive fast terminal sliding mode,” Proceedings 2011 International Conference on Mechatronic Science, Electric Engineering and Computer, Jilin, China, August 19-22, 2011, pp. 2151-2155.
[36]F. Zhang and G.-R. Duan, “Integrated translational and rotational finite-time maneuver of a rigid spacecraft with actuator misalignment,” IET Control Theory and Applications, vol. 6, no. 9, pp. 1192-1204, 2012.
[37]H. Du and S. Li, “Finite-time cooperative attitude control of multiple spacecraft using terminal sliding mode control technique,” International Journal of Modelling, Identification and Control , vol. 16, no. 4, pp. 327-333, 2012.
[38]Z. Man and X.-H. Yu, “Terminal sliding mode control for MIMO linear systems,” Proceedings of the IEEE Conference on Decision and Control, Kobe, Japan, Dec. 11-13, 1996, vol. 4, pp. 4619-4624.
[39]R.-M. Zhang, L. Dong, C.-Y. Sun “Adaptive nonsingular terminal sliding mode control design for near space hypersonic vehicles,” IEEE/CAA Journal of Automatica Sinica, vol. 1, no. 2, 2014.
[40]Q. Li, Y.-M. Fang, K.-S Kang,and H.-C Zheng “Extended state observer based bonsingular terminal sliding-mode control for non-sinusoidal oscillation of continuous casting mold driven by servo motor,” Proceedings of the 34th Chinese Control Conference, Hangzhou, China, July 28-30, 2015.
[41]K.-P. Liu, F.-X. Liu, S.-S. Liu,and Y.-C. Li “Non-singular terminal sliding mode control for landing on asteroids based on RBF neural network,” International Joint Conference on Neural Networks (IJCNN), Beijing, China, July 6-11, 2014
[42]S.-D. Xu, C.-C. Chen, and Z.-L. Wu, “Study of Nonsingular Fast Terminal Sliding-Mode Fault-Tolerant Control,” IEEE Trans. Industrial Electronics, vol. 62, no. 6, pp. 3906-3913, 2015.
[43]A. Rezoug, B. Tondu, M. Hamerlain and M. Tadjine, “Adaptive fuzzy nonsingular terminal sliding mode controller for robot manipulator actuated by pneumatic artificial muscles,” IEEE International Conference on Robotics and Biomimetics, pp. 334-339, 2013.
[44]C.-Z. Xu and Y.-C. Wang, “Nonsingular terminal neural network sliding mode control for multi-link robots based on backstepping,” World Congress on Intelligent Control and Automation, pp. 20-23, 2012.
[45]T.-Z. Jia and G.-W. Kang, “An RBF neural network-based nonsingular terminal sliding mode controller for robot manipulators,” International Conference on Intelligent Control and Information Processing, pp. 72-76, 2012.
[46]S.-Y. Chen and F.-J. Lin, “Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system,” IEEE Trans. Control Systems Technology, vol. 19, no. 3, pp. 636-643, 2011.
[47]M.-L. Jin, J. Lee, and P.-H. Chang, “Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control,” IEEE Trans. Industrial Electronics, vol. 56, no. 9, pp. 3593-3601, 2009.
[48]S.-Y. Chen and F.-J. Lin, “Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system,” IEEE Trans. Control Systems Technology, vol. 19, no. 3, pp. 636-643, 2011.
[49]T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985.
[50]K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Hoboken, NJ: Wiley, 2001.
[51]F.-H. Hsiao, C.-W. Chen, Y.-W. Liang, S.-D. Xu, and W.-L. Chiang, “T-S controller for nonlinear interconnected systems with multiple time delays,” IEEE Trans. Circuits and Systems, Part I, vol. 52, no. 9, pp. 1883-1893, 2005.
[52]P. Quiñones-Reyes, H. Benitez-Pérez, F. Cárdenas-Flores, and F. Garcia-Nocetti, “An approximation for reconfigurable fuzzy Takagi-Sugeno networked control,” IEEE Potentials, vol. 27, no. 6, pp. 38-44, 2008.
[53]T. Chen and Y.-C. Wang, “A fuzzy set approach for evaluating and enhancing the mid-term competitiveness of a semiconductor factory,” Fuzzy Sets and Systems, vol. 160, no. 5, pp. 569-585, 2009.
[54]B.-S. Chen and C. H. Wu, “Robust optimal reference tracking design method for stochastic synthetic biology system: T-S fuzzy approach,” IEEE Trans. Fuzzy Systems, vol. 18, no. 6, pp. 1144-1159, 2010.
[55]M.-C. Chen, W.-Y. Wang, S.-F. Su, and Y.-H. Chen, “Robust T-S fuzzy neural control of uncertain active suspension systems,” International Journal of Fuzzy Systems, vol. 12, no. 4, pp. 321-329, 2010.
[56]R. Berrios, F. Nunez, and A. Cipriano, “Fault tolerant measurement system based on Takagi-Sugeno fuzzy models for a gas turbine in as combined cycle power plant,” Fuzzy Sets and Systems, vol. 174, no. 1, pp. 114-130, 2011.
[57]B.-S. Chen, W.-H. Chen, and W. Zhang, “Robust filter for nonlinear stochastic partial differential systems in sensor signal processing: fuzzy approach,” IEEE Trans. Fuzzy Systems, vol. 20, no. 5, pp. 957-970, 2012.
[58]H. R. Karimi and M. Chadli, “Robust observer design for Takagi-Sugeno fuzzy systems with mixed neutral and discrete delays and unknown inputs,” Mathematical Problems in Engineering, 2012, 13 pages, 2012.
[59]D. Xu, B. Jiang, and P. Shi, “Nonlinear actuator fault estimation observer: An inverse system approach via a T-S fuzzy model,” International Journal of Applied Mathematics and Computer Science, vol. 22, no. 1, pp. 183-196, 2012.
[60]N. T. Vu, D.-Y. Yu, H. H. Choi, and J.-W. Jung, “T-S fuzzy model based sliding-mode control for surface mounted permanent magnet synchronous motors considering uncertainties,” IEEE Trans. Industrial Electronics, vol. 60, no. 10, pp. 4281-4291, 2013.
[61]H. Han, “Adaptive fuzzy sliding-mode control for a class of T-S fuzzy models,” IEEE Trans. Electronics, Information, and Systems, vol. 133, no. 2, pp. 334-341, 2013.
[62]M. Chadli and H. R. Karimi, “Robust observer design for unknown inputs Takagi-Sugeno models,” IEEE Trans. Fuzzy Systems, vol. 21, no. 1, pp. 158-164, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top