跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧彥劭
研究生(外文):Yen-Shao Lu
論文名稱:煤炭與甲烷燃料產氫之化學迴路製程模擬研究
論文名稱(外文):Simulation of Hydrogen Production via Chemical Looping Processes with Coal and Methane Fuels
指導教授:李豪業
指導教授(外文):Hao-Yeh Lee
口試委員:李豪業
口試委員(外文):Hao-Yeh Lee
口試日期:2016-06-30
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:化學迴路製程載氧體循環量評估參數分析程序模擬氫氣產率煤炭與天然氣燃料
外文關鍵詞:chemical looping combustionoxygen carrier circulation rateparameter analysisprocess simulationhydrogen productioncoal and natural gas fuel
相關次數:
  • 被引用被引用:2
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用Aspen Plus模擬軟體,完成化學迴路製程之模型建立與模擬分析。
由於煤炭可能因價格與產量波動,因此本研究探討三種不同煤炭。 Pocahontas NO.3、澳洲煤與及PRB之最小載氧體循環量(Rmin)分別為1.21、1.38與1.6,表示煤炭含水量越高,需操作於較高之載氧體循環量。並探討不同之操作條件,藉由降低蒸氣進料量,將部分載氧體送入空氣反應器進行氧化反應,以增加空氣反應器放熱量,進而使系統熱平衡,與最大產氫量個案相比,產氫量將降低32~44%,而澳洲煤與及PRB溫度超過飛灰形變溫度,須提升載氧體循環量至1.19 Rmin與1.24 Rmin以降低溫度差,進而避免飛灰形變。而30 kWth澳洲煤於空氣出料溫度1050 oC下,載氧體循環量約為4204.5 g/min。
於絕熱狀態下,燃料反應器與產氫反應器出料溫度不再是定值。當空氣反應器出料溫度與燃料反應器進料溫度相同,則達到系統熱平衡,表示載氧體循環量與蒸氣進料量均會影響空氣出料溫度。在最小空氣量下操作,僅將載氧體氧化回原相態並不一定能滿足輸送需求,藉由增大空氣量以滿足氣送需求,由於此空氣流量將會帶走較多熱量,故產氫量會較最小空氣量低。在較低載氧體循環量下操作,雖載氧體轉化率提升,但造成燃料反應器出料溫度下降,可藉由調整載氧體循環量,以達到較合理之操作溫度。
In this study, the chemical looping process model setup, simulation and analysis is finished by using the Aspen Plus simulator.
The fuel may be changed because of the coal prices or the production rate. In this study, three kinds of coal are demonstrated the fluctuation of fuel sources. The results show that the minimum oxygen carrier rate (Rmin) of Pocahontas No.3, ASC and PRB are 1.21, 1.38, and 1.6 respectily; it is found that the higher moisture of coal should operate at high oxygen carrier circulation rate. Three situations are discussed in this study. By reducing the steam flowrate, the partial oxygen carrier sends to the air reactor to oxidize. The whole system reaches heat balance but the hydrogen yield decreases 32 % to 44 % from the maximum hydrogen yield case. Furthermore, the ash deformation may take place if the air reactor outlet temperature is higher than the ash deformation temperature (ADT). The results show that the ASC and PRB should be operated at 1.19 Rmin and 1.24 Rmin to prevent ash deformation. In the 30 kWth ASC CDCL simulation, the oxygen carrier circulation rate is 4204.5 g/min when the air outlet temperature is 1050 oC.
In the adiabatic simulation, the fuel reactor and hydrogen generator outlet temperature is not constant. The system reachs heat balance conidition when the air reactor outlet temperature is the same with fuel reactor inlet temperature; it indicates the oxygen carrier circulation rate and steam inlet would affect the air outlet temperature. At the maximum oxygen carrier circulation rate: The minimum air flowrate is only regenerated the oxygen carrier to Fe2O3, it may not reach the transport request. By increasing the air flowrate to reach the gas delivery, the amount of air will take away more heat, so the hydrogen yield is lower than the minimum air flowrate. If the oxygen carrier is operated at lower circulation rate, the fuel reactor outlet temperature would decrease. It can be adjusted by the oxygen carrier circulation rate to achieve the more reasonable operating temperature of fuel reactor.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 V
表目錄 VII
1. 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究動機與目的 18
1.4 組織章節 19
2. 熱力學與動力學 20
2.1 前言 20
2.2 熱力學性質 21
2.3 動力學 25
3. 直接煤炭化學迴路程序 28
3.1 前言 28
3.2 模式建立 29
3.3 模式驗證 32
3.4 研究方法 40
3.5 不同煤炭之影響 42
3.5.1 最小載氧體循環量評估 42
3.5.2 最大產氫量 44
3.5.3 熱平衡評估 46
3.5.4 提升載氧體循環量評估 48
3.6 實驗級規模之模擬 50
4. 甲烷燃料化學迴路程序 57
4.1 前言 57
4.2 模式驗證與溫壓測試 58
4.3 擬態絕熱系統設計 62
4.4 絕熱系統設計 73
5. 結論和未來展望 88
參考文獻 91
Adánez, J., Abad, A., Garcia-Labiano, F., Gayán, P., de-Deigo, L.F. Progress in Chemical-Looing Combustion and Reforming Technologies. Prog. Energy Combust. Sci., 2012;38:215–282.
Adánez, J., Gayán, P., Celaya, J., de-Diego, L.F., Garcia-Libiano, F., Abad, A. Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Methane Combustion. Ind. Eng. Chem. Res. 2006; 45:6075–6080.
Andrus, H.E., Chiu, J.H., Thibeault, P.R. Alstom’s Chemical Looping Combustion Coal Power Technology Development Prototype. 1st International Conference on Chemical Looping, Lyon, France. 2010.
Aspen Plus. Getting Started Modeling Processes with Solids. AspenTech: Cambridge, MA. 2006.
Bayham, S., McGiveron, O., Tong, A., Chung, E., Kathe, M., Wang, D., Zeng, L., Fan L.S. Parametric and Dynamic Studies of an Iron-Based 25-kWth Coal Direct Chemical Looping Unit using Sub-Bituminous Coal. Applied Energy. 2015; 145: 354-363.
Bayham, S.C., Kim, H.R., Wang, D., Tong, A., Zeng, L., McGiveron, O., Kathe, M.V., Chung, E., Wang, W., Wang, A., Majumder, A., Fan, L.S. Iron-Based Coal Direct Chemical Looping Combustion Process: 200 h Continuous Operation of a 25-kWth Subpilot Unit. Energy Fuels. 2013; 27:1347−1356.
Beal, C., Epple, B., Lyngfelt, A., Adánez, J., Larring, Y., Guillemont, A., Anheden, M. Development of Metal Oxides Chemical Looping Process for Coal-fired Power Plants. 1st International Conference on Chemical Looping, Lyon, France. 2010.
Berguerand, N., Lyngfelt, A. Chemical Looping Combustion of Petroleum Coke Using Ilmenite in a 10 kWth Unit High Temperature Operation. Energy Fuels, 2009; 23:5257–5268.
Berguerand, N., Lyngfelt, A. The Use of Petroleum Coke as Fuel in a 10 kWth Chemical-looping Combustor. Int. J. Greenhouse Gas Control. 2008;2, 169–179.
Cao, Y., Sit, S.P., Pan, W.P. The Development of 10-kW Chemical Looping Combustion Technology in ICSET, WKU, 2nd Intemational Conference on Chemical Looping, 26-28 September, Darmstadt, Germany. 2012.
Chiu, P.C., Ku, Y., Wu, H.C., Kuo, Y.L., Tseng, Y.H. Chemical Looping Combustion of Polyurethane and Polypropylene in an Annular Dual-tube Moving Bed Reactor with Iron-Based Oxygen Carrier. Fuel, 2014; 135:146-152
Chiu, P.C., Ku, Y., Wu, H.C., Kuo, Y.L., Tseng, Y.H. Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion. Energy Fuels, 2014; 28:657-665
de-Diego, L.F., Garcia-Libiano, F., Gayán, P., Celaya, J., Palacios, J.M., Adánez, J. Operation of a 10 kWth Chemical-looping Combustor during 200h with a CuO-Al2O3 Oxygen Carrier. Fuel. 2007; 86:1036–1045.
Fan, L.S. Chemical looping systems for Fossil Energy Conservations. John-Wiley and sons. 2010
Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D. Advances in CO2 capture technology -The U.S. Department of Energy’s Carbon Sequestration Program. International Journal of Greenhouse Gas Control. 2008; 2: 9 ~ 20.
Gupta, P., Velazquez-Vargas, L.G., Fan, L.S. Syngas Redox (SGR) Process to Produce Hydrogen from Coal Derived Syngas. Energy Fuels. 2007; 21(5):2900–2908.
Hossain, M.M., de-Lasa, H,I. Chemical-looping Combustion (CLC) for Inherent CO2 Separations-A Review. Chem. Eng. Sci.2008; 63, 4433–4451.
International Energy Agency (IEA). Key World Energy Statistics. 2012.
Kathe, M.V., Empfield, A., Na, J., Blair, E., Fan, L.S. Hydrogen Production from Natural Gas Using an Iron-Based Chemical Looping Technology: Thermodynamic simulations and process system analysis. Applied Energy. 2016;165:183–201.
Kim, H.R., Wang, D., Zeng, L., Bayham, S., Tong, A., Chung, E., Kathe, M.V., Luo, S., McGiveron, O., Wang, A., Sun, Z., Chen, D., Fan, L.S. Coal direct chemical looping combustion process: Design and operation of a 25-kWth sub-pilot unit. Fuel. 2013; 108:370–384.
Kolbitsch, P., Bolhar-Nordenkampf, J., Pröll, T., Hofbauer, H. Comparison of Two Ni-based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation. Ind. Eng. Chem. Res. 2009a; 48: 5542–5547.
Kolbitsch, P., Pröll, T., Bolhar-Nordenkampf, J., Hofbauer, H. Operating Experience with Chemical Looping Combustion in a 120 kW Dual Circulating Fluidized Bed (DCFB) Unit. Energy Procedia. 2009b; 1:1465–1462.
Ku, Y., Wu, H.C., Chiu, P.C., Tseng, Y.H., Kuo, Y.L. Methane Combustion by Moving Bed Fuel Reactor with Fe2O3/Al2O3 Oxygen Carriers. Applied Energy. 2014;113:1909-1915
Lewis, W.K., Gilliland ER. Production of Pure Carbon Dioxide. US Patent No. 2665972, 1954.
Li, F., Zeng, L., Fan, L.S. Biomass Direct Chemical Looping Process: Process Simulation. Fuel. 2010a; 89:3773−3784.
Li, F., Zeng, L., Velazquez-Vargas, L.G., Zachary, Yoscovits., Fan, L.S. Syngas Chemical Looping Gasification Process: Bench-Scale Studies and Reactor Simulations. AIChE J. 2010 Aug; 56 (8):2186−2199.
Linderholm, C., Abad, A., Mattisson, T., Lyngfelt, A. 160 h of Chemical-looping Combustion in a 10 kW Reactor System with a NiO-based Oxygen Carrier. Int. J. Greenhouse Gas Control. 2008; 2:520–530.
Linderholm, C., Mattisson, T., Lyngfelt, A. Long-term Integrity Testing of Spray-dried Particles in a 10-kW Chemical-looping Combustor Using Natural Gas as Fuel. Fuel. 2009; 88:2083–2096.
Lyngfelt, A. Oxygen Carriers for Chemical Looping Combustion-4000 h of Operational Experience. Oil and Gas Science and Technology. 2011; 66(2):161–172.
Mattisson, T., Jardnas, A., Lyngfelt, A. Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen-application for Chemical-looping Combustion. Energy Fuels. 2003; 17: 643–651
National Energy Technology Laboratory. Detailed Coal Specifications. 2012.
Orth, M., Ströh, J., Epple, B. Design and Operation of a 1 MWth Chemical Looping Plant, 2nd Intemational Conference on Chemical Looping, 26-28 September, Darmstadt, Germany 2012
Pröll, T., Kolbitsch, P., Bolhar-Nordenkampf, J., Hofbauer, H. A Novel Dual Circulating Fluidized Bed System for Chemical Looping Processes. AIChE J. 2009a; 55 (12):3255–3266.
Pröll, T., Mayer, K., Bolhar-Nordenkampf, J., Kolbitsch, P., Mattisson, T., Lyngfelt, A., Hofbauer, H. Natural Mineral as Oxygen Carriers for Chemical Looping Combustion in a Dual Circulating Fluidized Bed System. Energy Procedia. 2009b; 1:27–34.
Ryu, H.J., Jo, S.H., Park, Y., Bae, D.H., Kim, S. Long Term Operation Experience in a 50 kWth Chemical Looping Combustor Using Natural Gas and Syngas as Fuels. 1st International Conference on Chemical Looping, Lyon, France. 2010.
Shen, L., Wu, J., Xiao, J., Gao, Z., Xiao, J. Reactivity Deterioration of NiO/Al2O3 Oxygen Carrier for Chemical Looping Combustion of Coal in a 10 kWth Reactor Combust. Flame. 2009a; 156:1377–1385.
Shen, L., Wu, J., Xiao, J., Song, Q., Xiao, R. Chemical Looping Combustion of Biomass in a 10 kWth Reactor with Iron Oxide as an Oxygen Carrier. Energy Fuels. 2009b; 23:2948–2505.
Sridhar, D., Tong, A., Kim, H., Zeng, L., Li, F., Fan, L.S. Syngas Chemical Looping Process: Design and Construction of a 25 kWth Subpilot Unit. Energy Fuels. 2012; 26:2292–2302.
Wu, H.C., Ku, Y., Tsai, H.H., Kuo, Y.L., Tseng, Y.H. Rice Husk as Solid Fuel for Chemical Looping Combustion in an Annular Dual-tube Moving Bed reactor. Chemical Engineering Journal.2015;280:82–89.
Xiang, W., Chen, Y. Hydrogen and Electricity from Coal with Carbon Dioxide Separation Using Chemical Looping Reactors. Energy Fuels. 2007; 21(4):2272–2277.
Zeng, L., He, F., Li, F., Fan, L.S. Coal-Direct Chemical Looping Gasification for Hydrogen Production: Reactor Modeling and Process Simulation. Energy & Fuels. 2012; 26:3680−3690.
Zeng, L., Tong, A., Kathe, M., Bayham, S., Fan, L.S. Iron Oxide Looping for Natural Gas Conversion in a Countercurrent Moving Bed Reactor. Applied Energy. 2015; 157: 338–347.
彭鏡禹,化學迴路技術發展概況與展望,中興工程,第124期。(2014) 111 - 119
黃資元,不同煤炭燃料於化學迴路產氫製程之模擬與分析研究(2015)
邱炳嶔,Fe2O3/Al2O3載氧體應用於化學迴圈程序移動床燃料反應器之評估研究(2014)
曾子維,交聯式流體化床之循環穩定性評估與計算流體力學模擬應用於化學迴路燃燒程序之研究(2016)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top