跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 23:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍雅馨
研究生(外文):Ya-Hsin Lan
論文名稱:錸金屬環錯合物之分子機械與[2+2]環化反應研究
論文名稱(外文):Molecular Rotor and [2+2] Cycloaddition of Rhenium-based Metallacycles
指導教授:呂光烈江志強江志強引用關係
指導教授(外文):Kuang-Lieh LuJyh-Chiang Jiang
口試委員:呂光烈江志強
口試委員(外文):Kuang-Lieh LuJyh-Chiang Jiang
口試日期:2016-06-06
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:221
中文關鍵詞:錸金屬分子機械光環化聚合反應
外文關鍵詞:Rhenium-based MetallacyclesMolecular Rotor[2+2] Cycloaddition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用自組裝一步合成法,製備一系列錸金屬環錯合物1~7,探討其分子機械與[2+2]環化反應之性質。
此研究分為二部分討論。第一部分選用一種雙末端?啶環,其結構上具有可轉動苯環之長鏈有機配子(bpmpa),分別搭配具有雙氧螯合性質的苯醌類(H2dhaq/H2dhnq)剛性配基,利用本身具有橋接雙核或雙邊雙芽(bis-bidentate)螯合性質,與錸金屬離子於溶劑熱法反應條件下,以正交鍵結(Orthogonal-bonding approach)的方式一步(one-pot)合成出雙核環狀結構的單體錯合物{[Re(CO)3]2(dhaq)(bpmpa)} (1)與{[Re(CO)3]2(dhnq)(bpmpa)} (2),並且利用FT-IR、1H NMR、FAB-MS、元素分析、X光單晶繞射、紫外/可見光光譜儀與螢光光譜儀之鑑定,分別對錯合物進行構型的分析。由於所使用之有機配子bpmpa上具有可轉動的苯環,在形成錸金屬錯合物後,得到一可轉動苯環之分子機械。從變溫1H NMR圖譜中,可以清楚的看出化合物2苯環轉動的現象,計算出其苯環轉動之活化能為10.3 kcal/mol,相較於先前文獻的例子,在圖譜中具有一明顯合併溫度(coalescence temperature),其原因為結構中para-phenylene左右連接之原子為氮原子,而氮上之孤對電子對會與para-phenylene苯環上之軌域電子雲產生共振,使得其混成軌域從sp3趨向於sp2,進而抑制para-phenylene的轉動。
第二部分選用的有機配子具有良好π共軛系統的雙末端?啶環(1,4-bpeb/1,6-bpht),分別搭配具有雙邊螯合性質的四並苯醌(H2dhnq)與雙邊螯合性質的聯咪唑類(BImH2/BiBzlmH2),與錸金屬於溶劑熱法反應條件下,以正交鍵結的方式一步合成出四核矩形(rectangle)結構的單體錯合物{{[Re(CO)3]2(dhnq)}2(1,4-bpeb)2}·2[C6H3(CH3)3] (3)、{{[(Re(CO)3]2BIm}2 (1,4-bpeb)2}·2(C4H8O) (4)、{{[Re(CO)3]2BIBzIm}2(1,4-bpeb)2}·2[C6H4(CH3)2] (5)、{{[(Re(CO)3)2BIm}2(1,6-bpht)2}·2(C4H8O) (6)與{{[Re(CO)3]2BIBzIm}2 (1,6-bpht)2}·2(C7H8) (7),而後使用FT-IR、FAB-MS、元素分析、X光單晶繞射、紫外/可見光與螢光光譜儀鑑定結構並探討錯合物的物理性質。而錯合物4-7經照光反應後,可利用1H NMR、紫外/可見光與螢光光譜儀鑑定出[2+2] cycloaddition (光環化)反應的進行。綜合實驗結果我們可以得知光環化反應的進行除了會受結構中之烯烴間距影響外,亦會受到遠端配位基之拉電子效應所影響,選用適當之有機配子,除了可以調控[2+2] cycloaddition反應的進行也可以藉由有機配子的選擇,控制及縮短其環化反應所需的時間。
This thesis is comprised of two parts. The first part describes the preparation of the complexes {[Re(CO)3]2(dhaq)(bpmpa)} (1, dhaq = 1,4-dihydroxy-9,10- anthraquinone, bpmpa = N,N′-Bis(pyridin-4-ylmethyl)-1,4-phenylenediamine) and {[Re(CO)3]2(dhnq)(bpmpa)} (2, dhnq = 6,11-dihydroxy-5,12-naphthacenedione) by treating Re2(CO)10 with bpmpa and H2dhaq or H2dhnq, respectively, under solvothermal conditions. Rhenium-based complexes 1 and 2 were characterized using FT-IR, 1H NMR, FAB-MS spectroscopic techniques, elemental analysis, UV–visible spectroscopy and fluorescence spectrometry. The structures of complexes 1 and 2 were further confirmed by single-crystal X-ray diffraction analysis. The para-phenylene group of the coordinated bpmpa ligand in complexes 1 or 2 rotate in solution at ambient temperature. The activation energy for the rotation of complex 2 was calculated to be 10.3 kcal/mol based on dynamic 1H NMR spectroscopic data.
The second part reports on the successful synthesis of the complexes {{[Re(CO)3]2(dhnq)}2(1,4-bpeb)2}·2[C6H3(CH3)3] (3, 1,4-bpeb = 1,4-Bis[2-(4-pyridyl) ethenyl]benzene), {{[(Re(CO)3]2BIm}2(1,4-bpeb)2}·2(C4H8O) (4, BIm = 2,2’-Biimidazole) and {{[Re(CO)3]2BIBzIm}2 (1,4-bpeb)2}·2[C6H4(CH3)2] (5, BiBzIm = 2,2’-Bisbenzimidazole) by treating Re2(CO)10 with 1,4-bpeb and H2dhnq, BImH2 or BiBzImH2. Complexes {{[(Re(CO)3)2BIm}2 (1,6-bpht)2}·2(C4H8O) (6, 1,6-bpht = trans,trans,trans-1,6-Bis(4-pyridyl)-1,3,5-hexatriene) and {{[Re(CO)3]2 BIBzIm}2(1,6-bpht)2}·2(C7H8) (7) were also successfully synthesized by treating Re2(CO)10 with 1,6-bpht and BImH2 or BiBzImH2, respectively, under solvothermal conditions. The complexes 37 were characterized using FT-1R, 1H NMR, FAB-MS spectroscopic techniques and elemental Analyses. The structures were further confirmed by single-crystal X-ray diffraction analysis. In the solid state, complexes 47 participated in interesting [2+2] cycloaddition reactions of the adjacent triene moieties upon irradiation with visible light. The cycloaddition products were characterized by 1H NMR, UV-visible spectrometry and fluorescence spectrometry. In addition, complexes 47 were also found to undergo cycloaddition reactions in the liquid state as a result of irradiation with light. The presence of substituents having electron-withdrawing effects on the bisimidazolate appear to affect the cycloaddition reactions.
中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VII
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 超分子化學 2
1.2.1 氫鍵 (hydrogen bonding) 3
1.2.2 離子作用力 (ion-to-ion interaction) 4
1.2.3 離子-偶極作用力 (ion-dipole interaction) 5
1.2.4 ππ作用力 (ππ stacking interaction) 6
1.2.5 凡得瓦力 (van der Waals force) 7
1.3 自組裝合成法 9
1.3.1 室溫自組裝 11
1.3.2 水浴合成法 12
1.3.3 水熱合成法 12
1.4 金屬與配子之方向性鍵結 (directional bonding) 14
1.5 單體環型超分子 16
1.5.1 雙核微環超分子 16
1.5.2 三角形超分子化合物 17
1.5.3 正四邊形(square)及矩形(rectangle)超分子化合物 18
1.5.4 分子籠(cages)與較高規則超分子 22
1.6 分子機械 23
1.7 [2+2] cycloaddition 25
1.8 研究動機 27
1.8.1 錸金屬錯合物之分子機械應用 27
1.8.2 錸金屬錯合物之[2+2] cycloaddition 30
第二章 實驗部分 31
2.1 儀器設備及實驗藥品 31
2.1.1 儀器設備 31
2.1.2 實驗藥品 32
  2.2 有機配子 33
2.2.1 購買之有機配子 33
2.2.2 N,N’-Bis(pyridin-4-ylmethyl)-1,4-phenylenediamine (bpmpa)
之合成 33
2.2.3 1,4-Bis[2-(4-pyridyl)ethenyl]benzene (1,4-bpeb)之合成 34
2.2.4 2,2’-Biimidazole (BImH2)之合成 35
2.2.5 2,2’-Bisbenzimidazole (BiBzImH2)之合成 36
  2.3 錸錯合物之合成步驟 37
2.3.1 {[Re(CO)3]2(dhaq)(bpmpa)} (1) 37
2.3.2 {[Re(CO)3]2(dhnq)(bpmpa)} (2) 39
2.3.3 {{[Re(CO)3]2(dhnq)}2(1,4-bpeb)2}·2[C6H3(CH3)3] (3) 41
2.3.4 {{[(Re(CO)3]2BIm}2(1,4-bpeb)2}·2(C4H8O) (4) 43
2.3.5 {{[Re(CO)3]2BIBzIm}2(1,4-bpeb)2}·2[C6H4(CH3)2] (5) 45
2.3.6 {{[(Re(CO)3)2BIm}2(1,6-bpht)2}·2(C4H8O) (6) 47
2.3.7 {{[Re(CO)3]2BIBzIm}2(1,6-bpht)2}·2(C7H8) (7) 49
  2.4 錸錯合物之光物理實驗 51
2.4.1 紫外光/可見光光譜分析 51
2.4.2 螢光光譜分析 52
第三章 結果與討論 53
  3.1 第一部分:錸錯合物12的構型與解析 53
3.1.1 錸錯合物1綜合討論 54
3.1.2 錸錯合物2綜合討論 62
3.2 第二部分:錸錯合物37的構型與解析........................................................75
3.2.1 錸錯合物3綜合討論 76
3.2.2 錸錯合物4綜合討論 89
3.2.3 錸錯合物5綜合討論 103
3.2.4 錸錯合物6綜合討論 113
3.2.5 錸錯合物7綜合討論 126
第四章 結論 140
第五章 參考文獻 142
第六章 附錄目錄 151
1.Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.
2.Prakash, M. J.; Radhakrishnan, T. P. Chem. Mater. 2006, 18, 2943.
3.(a) Perkin, K. K.; Turner, J. L.; Wooley, K. L.; Mann, S. Nano Lett. 2005, 5, 1457. (b) Jung, Y. J.; Kar, S.; Talapatra, S.; Soldano, C.; Viswanathan, G.; Li, X.; Yao, Z.; Ou, F. S.; Avadhanula, A.; Vajtai, R.; Curran, S.; Nalamasu, O.; Ajayan, P. M. Nano Lett. 2006, 6, 413. (c) Luechinger, N. A.; Loher, S.; Athanassiou, E. K.; Grass, R. N.; Stark, W. J. Langmuir 2007, 23, 3473.
4.(a) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M.; Science 2003, 300, 1127. (b) Tang, E.; Dai, Y. M.; Zhang, J.; Li, Z. J.; Yao, Y. G.; Zhang, J.; Huang, X.-D. Inorg. Chem. 2006, 45, 6276.
5.Kosaka, Y.; Yamamoto, H. M.; Nakao, A.; Tamura, M.; Kato, R. J. Am. Chem. Soc. 2007, 129, 3054.
6.(a) Yan, X.; Liu, G.; Haeussler, M.; Tang, B. Z. Chem. Mater. 2005, 17, 6053. (b) Shi, J. M.; Sun, Y. M.; Zhang, X.; Yi, L.; Cheng, P.; Liu, L. D. J. Phys. Chem. 2006, 110, 7677. (c) Lopez, N.; Vos, T. E.; Arif, A. M.; Shum, W. W.; Overon, J. C.; Miller, J. S. Inorg. Chem. 2006, 45, 4325.
7.(a) Rajendran, T.; Manimaran, B.; Lee, F. Y.; Lee, G. H.; Peng, S. M.; Wang, C. M.; Lu, K. L. Inorg. Chem. 2000, 39, 2016. (b) Rajendran, T.; Manimaran, B.; Liao, R. T.; Lin, R. J.; Thanasekaran, P.; Lee, G.-H.; Peng, S. M.; Liu, Y. H.; Chang, I. J.; Rajagopal, S.; Lu, K. L. Inorg. Chem. 2003, 42, 6388.
8.(a) Bauer, C. A.; Timofeeva, T. V.; Settersten, T. B.; Patterson, B. D.; Liu, V. H.; Simmons, B. A.; Allendorf, M. D. J. Am. Chem. Soc. 2007, 129, 7136. (b) Chen, B.; Yang, Y.; Zapata, F.; Lin, G.; Qian G.; Lobkovsky, E. B. Adv. Mater. 2007, 19, 1693.
9.(a) Dinca, M.; Long, J. R. Angew. Chem. Int. Ed. 2008, 47, 6766. (b) Furukawa, H.; Kim, J.; Ockwig, N. W.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2008, 130, 11650. (c) Wang, B.; Cote, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Nature 2008, 453, 207.
10.(a) Uemura, K.; Kitaura, R.; Ohta, Y.; Nagaoka, M.; Kitagawa, S. Angew. Chem.Int. Ed. 2006, 45, 4112. (b) Horike, S.; Dinca, M.; Tamaki, K.; Long, J. R. J. Am. Chem. Soc. 2008, 130, 5854.
11.(a) Ma, S.; Wang, X. S.; Yuan, D.; Zhou, H. C. Angew. Chem. Int. Ed. 2008, 47, 4130. (b) Li, J. R.; Tao, Y.; Yu, Q.; Bu, Z. H.; Sakamoto, H.; Kitagawa, S. Chem. Eur. J. 2008, 14, 2771.
12.(a) Lie, Y.; Li, G.; Li, X. and Cui, Y. Angew. Chem. Int. Ed. 2007, 46, 6301. (b) Dinca, M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 11172.
13.(a) Kondo, A.; Noguchi, H.; Kajiro, H.; Carlucci, L.; Mercandelli, P.; Proserpio, D. M.; Tanaka, H.; Kaneko, K.; Kanoh, H. Phys. Chem. B 2006, 110, 25565. (b) Wang, F. Q.; Zheng, X. J.; Wan, Y. H.; Sun, C. Y.; Wang, Z. M.; Wang, K. Z.; Jin, L. P. Inorg. Chem. 2007, 46, 2956. (c) Llabres i Xamena, F. X.; Corma, A.; Garcia, H. J. Phys. Chem. C 2007, 111, 80.
14.Aakeröy, C. B.; Beatty, A. M.; Lorimer, K. R. J. Chem. Soc., Dalton Trans. 2000, 3869.
15.Mazik, M.; Bläser, D.; Boese, R. Chem. Eur. J. 2001, 6, 2865.
16.Tadokoro, M.; Shiomi, T.; Isobe, K.; Nakasuji, K. Nakasuji, K. Inorg. Chem. 2001, 40, 5467.
17.Prior, T. J.; Rosseinsky, M. J. Chem. Commun. 2001, 1222.
18.Desiraju, G. R. Crystal Engineering. The Design of Organic Solids, Elsevier, Amsterdam, 1989.
19.Etler, M. C. Acc. Chem. Res. 1990, 23, 120.
20.Ferguson, S. B.; Sanford, E. M.; Seward, E. M.; Diederich, F. J. Am. Chem. Soc. 1991, 113, 5410.
21.Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 3885.
22.Kyba, E. P.; Helgeson, R. C.; Madan, K.; Gokel, G. W.; Tarnowski, T. L.; Moore, S. S.; Cram, D. J. J. Am. Chem. Soc. 1977, 99, 2564.
23.Holliday, B. J.; Mirkin, C. A. Angew. Chem. Int. Ed. 2001, 40, 2022.
24.Fujita, M.; Fujita, N.; Ogura, K.; Yamaguchi, K. Nature 1999, 400, 52.
25.Dolomanov, O. V.; Blake, A. J.; Champness, N. R.; Schröder, M.; Wilson, C. Chem. Commun. 2003, 6, 682.
26.(a) Lehn, J. M. Supramolecular Chemistry, Concepts and Perspecti Ves; VCH: Weinheim, 1995. (b) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. (c) Jones, C. J. Chem. Soc. Rev. 1998, 27, 289. (d) Swiegers, G. F.; Malefetse, T. J. Chem. Rev. 2000, 100, 3483. (e) Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, T.; Biradha, K. Chem. Commun. 2001, 509. (f) Sauvage, J. P. Acc. Chem. Res. 1998, 31, 611. (g) Holliday, B. J.; Mirkin, C. A. Angew. Chem. Int. Ed. 2001, 40, 2022. (h) Cotton, F. A.; Lin, C.; Murillo, C. A. Acc. Chem. Res. 2001, 34, 759. (i) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975. (j) Ruben, M.; Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.; Lehn, J. M. Angew. Chem. Int. Ed. 2004, 43, 3644.
27.(a) Gianneschi, N. C.; Masar, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825. (b) Kovbasyuk, L.; Kramer, R. Chem. Rev. 2004, 104, 3161. (c) Sanders, J. K. M. Chem. Eur. J. 1998, 4, 1378. (d) Hof, F.; Rebek, J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4775. (e) Vriezema, D. M.; Aragones, M. C.; Elemans, J. A. A. W.; Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Chem. Rev. 2005, 105, 1445. (f) Yoshizawa, M.; Tamura, M.; Fujita, M. Science 2006, 312, 251. (g) Amijs, C. H. M.; van Klink, G. P. M.; van Koten, G. Dalton Trans. 2006, 308.
28.(a) Thanasekaran, P.; Liao, R. T.; Liu, Y. H.; Rajendran, T.; Rajagopal, S.; Lu, K. L. Coord. Chem. Rev. 2005, 249, 1085. (c) Dinolfo, P. H.; Hupp, J. T. Chem. Mater. 2001, 13, 3113. (b) Sun, S. S.; Lees, A. J. Coord. Chem. Rev. 2002, 230, 171. (d) Slone, R. V.; Benkstein, K. D.; Belanger, S.; Hupp, J. T.; Guzei, I. A.; Rheingold, A. L. Coord. Chem. Rev. 1998, 171, 221. (e) Woessner, S. M.; Helms, J. B.; Shen, Y.; Sullivan, B. P. Inorg. Chem. 1998, 37, 5406. (f) Lee, S. J.; Lin, W. J. Am. Chem. Soc. 2002, 124, 4554. (g) Sun, S. S.; Lees, A. J. Chem. Commun. 2001, 103.
29.(a) Schmittel, M.; Lin, H. W. Angew. Chem. Int. Ed. 2007, 46, 893. (b) Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J. Angew. Chem. Int. Ed. 2007, 46, 6658. (c) Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T. Angew. Chem. Int. Ed. 2007, 46, 6824. (d) Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 13447. (e) Ha-Thi, M. H.; Penhoat, M.; Michelet, V.; Leray, I. Org. Lett. 2007, 9, 1133. (f) Batista, R. M. F.; Oliveira, E.; Costa, S. P. G.; Lodeiro, C.; Raposo, M. M. M. Org. Lett. 2007, 9, 3201. (g) Ray, D.; Bharadwaj, P. K. Inorg. Chem. 2008, 47, 2252.
30.(a) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 371. (b) Takaoka, K.; Kawano, M.; Hozumi, T.; Ohkoshi, S. I.; Fujita, M. Inorg. Chem. 2006, 45, 3976. (c) Yoshizawa, M.; Kusukawa, T.; Kawano, M.; Ohhara, T.; Tanaka, I.; Kurihara, K.; Niimura, N.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 2798. (d) Tashiro, S.; Tominaga, M.; Kawano, M.; Therrien, B.; Ozeki, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 4546. (e) Yoshizawa, M.; Ono, K.; Kumazawa, K.; Kato, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 10800. (f) Tominaga, M.; Suzuki, K.; Murase, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 11950.
31.(a) Fujita, K. I.; Yamashita, M.; Puschmann, F.; Alvarez-Falcon, M. M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9044. (b) Yamashita, K. I.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 1850. (c) Kamiya, N.; Tominaga, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 3816. (d) Nishioka, Y.; Yamaguchi, T.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 7000. (e) Suzuki, K.; Kawano, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 10652. (f) Yamauchi, Y.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2008, 130, 5832.
32.(a) Kaim, W.; Schwederski, B.; Dogan, A.; Fiedler, J.; Kuehl, C. J.; Stang, P. J. Inorg. Chem. 2002, 41, 4025. (b) Zheng, Y. R.; Yang, H. B.; Northrop, B. H.; Ghosh, K.; Stang, P. J. Inorg. Chem. 2008, 47, 4706. (c) Deak, A.; Megyes, T.; Tarkanyi, G.; Kiraly, P.; Biczok, L.; Palinkas, G.; Stang, P. J. J. Am. Chem. Soc. 2006, 128, 12668. (d) Yang, H. B.; Ghosh, K.; Northrop, B. H.; Zheng, Y. R.; Lyndon, M. M.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 14187. (e) Kuehl, C. J.; Huang, S. D.; Stang, P. J. J. Am. Chem. Soc. 2001, 123, 9634. (f) Yang, H. B.; Ghosh, K.; Zhao, Y.; Northrop, B. H.; Lyndon, M. M.; Muddiman, D. C.; White, H. S.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 839. (g) Li, S. S.; Yan, H. J.; Wan, L. J.; Yang, H. B.; Northrop, B. H.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 9268. (h) Jude, H.; Sinclair, D. J.; Das, N.; Sherburn, M. S.; Stang, P. J. J. Org. Chem. 2006, 71, 4155. (i) Chi, K. W.; Addicott, C.; Moon, M. E.; Lee, H. J.; Yoon, S. C.; Stang, P. J. J. Org. Chem. 2006, 71, 6662. (j) Huang, F.; Yang, H. B.; Das, N.; Maran, U.; Arif, A. M.; Gibson, H. W.; Stang, P. J. J. Org. Chem. 2006, 71, 6623. (k) Yang, H. B.; Ghosh, K.; Arif, A. M.; Stang, P. J. J. Org. Chem. 2006, 71, 9464. (l) Yang, H. B.; Das, N.; F. H.; Hawkridge, A. M.; Dıaz, D. D.; Arif, A. M.; Finn, M. G.; Muddiman, D. C.; Stang, P. J. J. Org. Chem. 2006, 71, 6644. (m) Northrop, B. H.; Glockner, A.; Stang, P. J. J. Org. Chem. 2008, 73, 1787. (n) Das, N.; Ghosh, A.; Singh, O. M.; Stang, P. J. Org. Lett. 2006, 8, 1701. (o) Yang, H. B.; Ghosh, K.; Northrop, B. H.; Stang, P. J. Org. Lett. 2007, 9, 1561. (p) Yang, H. B.; Ghosh, K.; Das, N.; Stang, P. J. Org. Lett. 2006, 8, 3991.
33.(a) Dixon, F. M.; Eisenberg, A. H.; Farrell, J. R.; Mirkin, C. A. Inorg. Chem. 2000, 39, 3432. (b) Liu, X.; Eisenberg, A. H.; Stern, C. L.; Mirkin, C. A. Inorg. Chem. 2001, 40, 2940. (c) Gianneschi, N. C.; Mirkin, C. A. Inorg. Chem. 2002, 41, 5326. (d) Masar, M. S.; Mirkin, C. A.; Stern, C. L.; Zakharov, L. N.; Rheingold, A. L. Inorg. Chem. 2004, 43, 4693. (e) Holliday, B. J.; Farrell, J. R.; Mirkin, C. A. J. Am. Chem. Soc. 1999, 121, 6316. (f) Jeon, Y. M.; Heo, J.; Brown, A. M.; Mirkin, C. A. Organometallics 2006, 25, 2729. (g) Brown, A. M.; Ovchinnikov, M. V.; Stern, C. L.; Mirkin, C. A. J. Am. Chem. Soc. 2004, 126, 14316. (h) Gianneschi, N. C.; Nguyen, S. T.; Mirkin, C. A. J. Am. Chem. Soc. 2005, 127, 1644. (i) Yoon, H. J.; Heo, J.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129, 14182. (j) Holliday, B. J.; Arnold, F. P.; Mirkin, C. A. J. Phys. Chem. A 2003, 107, 2737. (k) Eisenberg, A. H.; Dixon, F. M.; Mirkin, C. A.; Stern, C. L.; Incarvito, C. D.; Rheingold, A. L. Organometallics 2001, 20, 2052.
34.Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853.
35.Stang, P. J.; Olenyuk, B. Acc. Chem. Res. 1997, 30, 502.
36.Fujita, M.; Nagao, S.; Iida, M.; Ogata, K.; Ogura, K. J. Am. Chem. Soc. 1993, 115, 1574.
37.Fujita, M.; Ibukuro, F.; Hagihara, H.; Ogura, O. Nature 1994, 367, 720.
38.Fujita, M.; Ibukuro, F.; Seki, H.; F; Kamo, O.; Imanari, M.; Ogura, K. J. Am. Chem. Soc. 1996, 118, 899.
39.Fujita, M.; Ibukuro, F.; Yamaguchi, K.; Oguura O. J. Am. Chem. Soc. 1995, 117, 4175.
40.Fujita, M.; Aoyagi, M.; Ogura, K. Inorg. Chim. Acta 1996, 246, 53.
41.Fujita, M.; Aoyagi, M.; Ibukuro, F.; Ogura, K.; Yamaguchi, K. J. Am. Chem. Soc. 1998, 120, 611.
42.Fujita, M.; Sasaki, O.; Mitsuhashi, T.; Fujita, T.; Yamaguchi, K.; Ogura, K. Chem. Commun. 1996, 1535.
43.Benkstein, K. D.; Hupp, J. T.; Stern, C. L. Inorg. Chem. 1998, 37, 5404.
44.Benkstein, K. D.; Hupp, J. T.; Stern C. L. J. Am. Chem. Soc. 1998, 120, 12982.
45.Benkstein, K. D.; Hupp, J. T.; Stern, C. L. Angew. Chem. 2000, 112, 3013.
46.Benkstein, K. D.; Hupp, J. T.; Stern, C. L. Angew. Chem. Int. Ed. 2000, 39, 2891.
47.Manimaran, B.; Rajendran, T.; Lu, Y. L.; Lee, G. H.; Peng, S. M.; Lu, K. L. J. Chem. Soc., Dalton Trans. 2001, 515.
48.Liao, R. T.; Yang, W. C.; Thanasekaran, P.; Tsai, C. C.; Sathiyendiran, M.; Liu, Y. H.; Rajendran, T.; Lin, H. M.; Tseng, T. W.; Lu, K. L. Chem. Commun. 2008, 9, 3175.
49.Andreetti, G. D.; Ungaro, R. and Pochini, A. Chem. Commun. 1979, 1005.
50.Manimaran, B.; Thanasekaran, P.; Rajendran, T.; Liao, R. T.; Liu, Y. H.; Lee, G. H.; Peng, S. M.; Rajagopal, S.; Lu, K. L. Inorg, Chem. 2003, 42, 4795.
51.Olenyuk, B.; Whiteford, J. A.; Fechtenkotter, A.; Stang, P. J. Nature 1999, 398, 796.
52.Sathiyendiran, M.; Chang, C. H.; Chuang, C. H.; Luo T. T.; Wen Y. S.; Lu, K. L. Dalton Trans. 2007, 1.
53.(a) Li, H.; Eddaoudi, M.; O’Keefe, M.; Yaghi, O. M. Nature 1999, 402, 276. (b) Kepert, C. J.; Prior, T. J.; Rosseinsky, M. J. J. Am. Chem. Soc. 2000, 122, 5158. (c) Lee, E. Y.; Suh, M. P. Angew. Chem. Int. Ed. 2004, 43, 2798. (d) Iordanidis, L.; Kanatzidis, M. G. Angew. Chem. Int. Ed. 2000, 39, 1928. (e) Iordanidis, L.; Kanatzidis, M. G. J. Am. Chem. Soc. 2000, 122, 8319.
54.(a) Schmidt , G. M. J. Am. Chem. Soc. 1964, 2014. (b) Schmidt, G. M. Pure Appl. Chem. 1971, 27, 647. (c) Wegner, G. Pure Appl. Chem. 1977, 49, 443. (d) Photochemistry in Organized and Constrained Media (Ed.: V. Ramamurthy), VCH, New York, 1991. (e) Ramamurthy, V.; Venkatesan, K. Chem. Rev. 1987, 87, 433.
55.(a) Theocharis, C. R.; Jones, W. in Organic Solid State Chemistry (Ed.: G. R. Desiraju), Elsevier, 1987, chap. 2, pp. 47. (b) Wagner, P.; Park B. S. in Organic Photochemistry, Vol. 11 (Ed.; A. Padwa), Dekker, New York, 1991, chap. 4 (c) Jones, W. Organic Molecular Solids: Properties and Applications, CRCPress, Boca Raton, FL, 1997. (d) Keating, A. E.; Garcia-Garibay M. A. in Organic and Inorganic Photochemistry (Eds.: V. Ramamurthy, K. S. Schanze), Dekker, New York, 1998, p. 195.
56.(a) MacGillivray, L. R.; Papaefstathiou, G. S.; Friscie, T.; Varshney, D. B.; Hamilton, T. D. Top. Curr. Chem. 2005, 248, 201. (b) Varshney, D. B.; Gao, X.; Friscie, T.; MacGillivray, L. R. Angew. Chem, Int. Ed. 2006, 45, 646. (c) Atkinson, M. B. J.; Bucar, D. K.; Sokolov, A. N.; Friscie, T.; Robinson, C. N.; Bilal, M. Y.; Sinada, N. G.; Chevannes, A.; MacGillivray, L. R. Chem. Commun. 2008, 44, 5713. (d) Papaestathiou, G. S.; Zhong, Z.; Geng L.; MacGillivray L. R. J. Am. Chem. Soc. 2004, 126, 9158. (e) Peedikakkal, A. M. P.; Koh, L. L.; Vittal, J. J. Chem. Commun. 2008, 4, 441.
57.(a) Chu, Q.; Swenson, D. C.; MacGillivray, L. R. Angew. Chem. Int. Ed. 2005, 44, 3569. (b) Papaefstathiou, G. S.; Georgia, I. G.; Friscic, T.; MacGillivray, L. R. Chem. Commun. 2005, 31, 3974. (c) Toh, N. L.; Nagarathinam, M.; Vittal, J. J. Angew. Chem. Int. Ed. 2005, 44, 2237.
58.Lu, Z. Z.; Lee, C. C.; Velayudham, M.; Lee, L. W.; Wu, J. Y.; Kuo, T. S.; Lu, K. L. Chem. Eur. J. 2012, 18, 15714.
59.Salvador, P. E.; Braulio, R. M.; Leilei, X.; Rosa S.; Gonzalo, J. O.; Houk, N. K.; Miguel A, G. G. J. Am. Chem. Soc. 2015, 137, 2175.
60.Malaichamy S.; Wu, J. Y.; Murugesan V.; Lee, G. H.; Peng, S. M.; Lu, K. L. Chem. Commun. 2009, 3795.
61.Heiner D.; Oleg S.; Erli S. J. Phys. Org. Chem. 2004, 17, 1046.
62.Ping Y.; Chunlin H.; Jean’ne M. S. Chem. Eur. J. 2016, 22, 2108.
63.Yin, J.; Elsenbaumer, R. L. J. Org. Chem. 2005, 70, 9436.
64.Han, Y. F.; Lin, Y. J.; Jia, W. G.; Wang, G. L.; Jin, G. X. Chem. Commun. 2008, 15, 1807.
65.Sathiyendrian, M.; Wu, J. Y.; Velayudham, M.; Lee, G. H.; Peng, S. M.; Lu, K. L. Chem. Commun. 2009, 3795.
66.https://quizlet.com/
67.Shoemaker, R. Inorganica Chimica Acta, 2006, 359, 1478.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top