跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏翰
研究生(外文):Bo-Han Chen
論文名稱:植基於支持向量機之快速彩色濾波陣列樣型辨識方法
論文名稱(外文):Fast SVM-based identification of arbitrary CFA images
指導教授:鍾國亮鍾國亮引用關係
指導教授(外文):Kuo-Liang Chung
口試委員:鍾國亮
口試委員(外文):Kuo-Liang Chung
口試日期:2016-07-11
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:30
中文關鍵詞:機器學習支持向量機交叉驗證馬賽克影像彩色濾波陣列
外文關鍵詞:Machine learningSupport vector machineCross-validationMosaic imageColor Filter Array
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
馬賽克影像中,每一個通過彩色濾波陣列的像素點僅由一個顏色所組成,遺
失彩色濾波陣列將無法解馬賽克。本篇論文提出一套植基於支持向量機的彩色濾
波陣列影像辨識方法。本篇論文所提出方法能辨識十一種彩色濾波陣列,方法分
為兩階段。第一階段藉由在空間域抽取彩色濾波陣列特徵訓練與預測支持向量機,
能直接辨識六種彩色濾波陣列,其餘的五種因為有誤判發生,需要在第二階段進
行辨識。第二階段使用決定樹能夠正確辨識其餘五種彩色濾波陣列。在本實驗中,
我們實五組作交叉驗證,實驗結果顯示和先前方法相比,本篇論文所提植基於支
持向量機之二階段辨識方法與先前方法相比,能辨識在更短的時間內辨識彩色濾
波陣列種類。
Considering mosaic images, each pixel captured by color filter array is composed
of only one primary color. Without the color filter array (CFA) pattern information, it
is hard to demosaic or compress CFA images. In this paper, we propose a SVM based
method to identify the CFA pattern of the input CFA image. The proposed method has
two stages. In the first stage, we train SVM by features extracted from the spatial
domain of CFAs. In this stage, 6 CFA structures can be recognized and the other 5 CFA
structures can be identified in the second stage. In the second stage, we use decision
tree approach to identify the remaining CFA structures. Based on 5 groups crossvalidation, experimental results demonstrate that the proposed SVM based
identification method can identify CFA structures faster when compared with the stateof-the-art algorithm.
中文摘要.........................................................................................................................I
Abstract..........................................................................................................................II
銘謝..............................................................................................................................III
目錄..............................................................................................................................IV
圖目錄...........................................................................................................................V
表目錄..........................................................................................................................VI
第一章 緒論..................................................................................................................1
第二章 相關結果介紹:Huang et al.的方法..................................................................5
第三章 植基於支持向量機的快速辨識彩色濾波陣列方法......................................6
3-1 彩色濾波陣列結構的特性以及所提方法的假設.................................................8
3-2 在空間域抽取特徵之方法....................................................................................10
3-3 支持向量機的訓練與預測....................................................................................12
3-4 誤判補償的二階段辨識........................................................................................14
第四章 實驗結果........................................................................................................19
第五章 結論與未來工作............................................................................................29
5.1 結論.......................................................................................................................29
5.2 未來工作...............................................................................................................29
參考文獻......................................................................................................................30
[1] R. Lukac, Single-Sensor Imaging: Methods and Applications for Digital Cameras,
CRC Press/Taylor and Francis, Boca Raton, FL, 2008
[2] B. E. Bayer, “Color imaging array,” U.S. Patent# 3 971 065, 1976.
[3] M. Parmar, and S. J. Reeves, “A perceptually based design methodology for color
filter arrays,” Proceeding of IEEE ASSP 2004, Montreal, pp. 473-476, May 2004.
[4] R. Lukac, and K. N. Plataniotis, “Color filter arrays: Design and performance
analysis,” IEEE Trans. Consumer Electron, Vol 51, No. 4, pp. 1260-1267, Nov. 2005.
[5] J. E. Adams, and J. F. Hamilton, “Adaptive color plan interpolation in single sensor
color electric camera,” U.S. Patent# 5 506 619, 1996.
[6] W. Pennebaker, J. Mitchell, JPEG, “Still Image Data Compression
Standard,” Van Nostrand, New York, 1993.
[7] Y.H. Huang, K.L. Chung and T.J. Lin, “Efficient identification of arbitrary color
filter array images based on the frequency domain approach,” Signal Processing,
Volume 115, October 2015, Pages 120–129.
[8] [Online]. Available: <https://www.csie.ntu.edu.tw/~cjlin/>, slate March 5 2016.
[9] M. Mignotte, “Segmentation by fusion of histogram-based k-means clusters in
different color spaces,” IEEE Trans. Image Process. 17 (May (5)) (2008) 780–787.
[10][Online].Available:<http://r0k.us/graphics/kodak/>, slate March 5 2016.
[11][Online].Available:<http://www4.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.ht
m>, slate March 5 2016.
[12][Online].Available:<https://tecnick.com/public/code/cp_dpage.php?aiocp_dp=test
images >, slate March 5 2016.
[13][Online].Available:<http://tabby.vision.mcgill.ca/html/browsedownload.html>,
slate March 5 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊