跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾郁婷
研究生(外文):Yu-Ting Tseng
論文名稱:軟體缺失抑制之決策模型
論文名稱(外文):A Decision Model for Suppressing Software Defect
指導教授:黃世禎黃世禎引用關係
指導教授(外文):Sun-jen Huang
口試委員:黃世禎
口試委員(外文):Sun-jen Huang
口試日期:2016-06-06
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:70
中文關鍵詞:軟體品質成本軟體缺失指標決策模型
外文關鍵詞:software cost of qualitysoftware defect indicatordecision model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  如果軟體缺失未被即時修復,隨著專案的進行,可能產生更多的相關擴散性缺失,而組織為了提高和保證軟體產品有一定的品質,會進行缺失抑制的活動,以避免將來為修復擴散性缺失而增加重工的成本。實務上,國內僅有少部分組織使用軟體缺失度量指標的工具,來幫助控管軟體專案缺失,且在國內外軟體缺失管理的工具,其對歷史專案回饋資訊仍顯不足。學術上,國內探討軟體缺失度量指標的訂立、應用與分析並不是太多,其相關應用研究對軟體度量缺失指標的使用範圍也較缺乏,而國外針對軟體缺失的應用中,提出的軟體缺失度量與品質成本相關分析,並沒有依據缺失的嚴重等級不同的特性對軟體品質成本會有不同的影響作為探討,國內則較無依據品質成本構面整合分析缺失度量指標。
  基於前述的原因,本研究參考文獻中對缺失度量資料應用情形,並依其相關性建構出以品質成本分類構面應用與整合缺失度量指標的方式,將軟體缺失度量指標集分成兩個構面,包含缺失抑制成本和缺失擴散成本,再提供一種適用於國內外的缺失度量指標歷史資料應用的抑制率決策模型,並增加缺失度量指標的使用項目與範圍,包含缺失數量、缺失的擴散程度和缺失的嚴重等級,最後運用兩個管理議題的案例模擬,一是時程和成本限制下之軟體品質最佳化的嚴重等級缺失抑制率決策;二是符合最低軟體品質要求之最適抑制率決策,說明如何使用軟體專案缺失度量指標,求解本研究所建立的軟體品質成本分析模型,合理地為預計進行開發的軟體專案做各階段的缺失抑制率決策。
If a software defect is not fixed in time by software engineers, it may expand more of other defects. To improve and guarantee the quality of software products reaching a higher level, the organization will suppress the defects which can prevent developer reworking for fixing the expansion defects. Practically, there are a few of organization using software defects collecting tools to manage software defects. In domestic and international, the further feedback from historical defect data of tools is still apparently not enough. Academically, the establishment, application and analysis of defect indicators are quite few in domestic, so does the usable range of defect indicators. Moreover, concerning the related study of software defect metrics and cost of quality, international research does not discuss the influence of different serious level of defects on software cost of quality, and domestic research less mention and combine software defect metrics and cost of quality.
To address the above problem, the purpose and results of this study included: (a) Establish an integration software indicators based on cost of quality by researching the related study of the application of software defect metrics, and (b) Provide a usable decision model for suppressing the rate by the use of historical data of software defects, and (c) Add more usable range of the software defect indicators, such as software defect expansion level and serious level, and (d) Provide two case simulation to explain how to use software defect indicators, and also solve the cost of the quality analysis model established in this study. The case simulation is including two topics. First, reach the highest software product quality. Second, achieve the lowest software product quality. What the optimization defects suppressing rate is and how to make the decision under the limitation of time and cost. Therefore, an organization can make the decision for suppressing defects and obtaining the information about the suppressing rate for each software development phase reasonably.
摘要 I
Abstract II
誌謝 III
表目錄 VI
圖目錄 VIII
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究流程與步驟 4
1.5 本文架構 5
第2章 文獻探討 6
2.1 軟體缺失 6
2.1.1 軟體缺失定義 6
2.1.2 軟體缺失特性 6
2.1.3 軟體缺失重工成本 7
2.2 軟體缺失度量指標 8
2.2.1 軟體缺失度量指標集 8
2.2.2 軟體缺失度量指標集的應用 10
2.3 軟體品質成本 12
2.3.1 軟體品質成本定義 12
2.3.2 軟體品質成本分類 12
第3章 軟體缺失度量指標應用 14
3.1 軟體缺失度量指標整合於品質成本分析層面 14
3.1.1 缺失抑制成本構面 17
3.1.2 缺失擴散成本構面 19
3.2 軟體缺失抑制之管理議題 21
3.2.1 議題一-時程和成本限制下之軟體品質最佳化的嚴重等級缺失抑制率決策 25
3.2.2 議題二-符合最低軟體品質要求之最適抑制率決策 39
第4章 案例模擬分析 45
4.1 模擬分析一-時程和成本限制下之軟體品質最佳化的嚴重等級缺失抑制率決策 46
4.2 模擬分析二-符合最低軟體品質要求之最適抑制率決策 55
第5章 結論與建議 61
5.1 研究貢獻 61
5.2 研究限制 62
5.3 後續研究建議 63
參考文獻 64
附錄A–M公司軟體專案及缺失資料表 67
1.Suma, V. and T. Nair, Effective defect prevention approach in software process for achieving better quality levels. arXiv preprint arXiv:1001.3552, 2010.
2.Kumaresh, S. and R. Baskaran, Defect analysis and prevention for software process quality improvement. International Journal of Computer Applications, 2010. 8(7).
3.Mujtaba, G., T. Mahmood, and P. Nasir, A Holistic Approach to Software Defect Analysis and Management. Australian Journal of Basic and Applied Sciences, 2011. 5(6): p. 1632-1640.
4.Simcoe, C.W., An ounce of prevention. American Intra-Ocular Implant Society Journal, 1978. 4(1): p. 39-44.
5.Schulz, T., et al., Predicting the Flow of Defect Correction Effort using a Bayesian Network Model. An International Journal, 2013. 18(3): p. 435-477.
6.Kan, S.H., Metrics and models in software quality engineering. 2002: Addison-Wesley Longman Publishing Co., Inc.
7.Ordonez, M.J. and H.M. Haddad. The state of metrics in software industry. in Information Technology: New Generations, 2008. ITNG 2008. Fifth International Conference on. 2008. IEEE.
8.Moore, J.W., Software engineering standards. 1998: Wiley Online Library.
9.Guide, A. Project Management Body of Knowledge (PMBOK® GUIDE). in Project Management Institute. 2001.
10.Laitenberger, O. and J.-M. DeBaud, An encompassing life cycle centric survey of software inspection. Journal of systems and software, 2000. 50(1): p. 5-31.
11.Westland, J., The cost behavior of software defects. 2004. 37: p. 229-238.
12.Megen, R. and D. Meyerhoff, Costs and benefits of early defect detection: experiences from developing client server and host applications. Software Qual J, 1995. 4(4): p. 247-256.
13.Jones, C.C., Software quality: Analysis and guidelines for success. 1997: Thomson Learning.
14.Boehm, B., Industrial software metrics top 10 list. 1987, IEEE COMPUTER SOC 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264.
15.Kitchenham, B. and S.L. Pfleeger, Software quality: the elusive target [special issues section]. IEEE Software, 1996. 13(1): p. 12-21.
16.Azeem, N. and S. Usmani, Analysis of data mining based software defect prediction techniques. Global Journal of Computer Science and Technology, 2011. 11(16).
17.Rawat, M.S. and S.K. Dubey, Software defect prediction models for quality improvement: a literature study. IJCSI International Journal of Computer Science Issues, 2012. 9(5): p. 288-296.
18.Kan, S.H., J.D. Musa, and M. Liu, Metrics and Models in Software Quality Engineering. 2014: Citeseer.
19.吳宗穆, 軟體流程改善量化績效指標制訂之研究. 2006.
20.Chen, C.-f., Definition of Software Defect Indicators and the Development of Defect Management System. 2014.
21.許純茹, 軟體缺失度量指標整合應用之研究. 2015.
22.苑畅, 胡克瑾, and H.U.K. Yuan Chang, 基于缺陷度量的软件质量成本分析模型 - Cost of Software Quality Analysis Model Based on Defect Metrics. 计算机工程, 2007. 33(6): p. 45-47.
23.Snipes, W., et al., Defining the decision factors for managing defects: A technical debt perspective. 2012. p. 54-60.
24.Juran, J.M. and A.B. Godfrey, Quality handbook. Republished McGraw-Hill, 1999.
25.Dale, B., The role of management in TQM. DALE, BG (2003): Managing Quality. 4ª edición, Blackwell publishing, Oxford, 2003: p. 34-50.
26.Ebert, C. and R. Dumke, Software Measurement: Establish-Extract-Evaluate-Execute. 2010.
27.Feigenbaum, A.V., Quality control: Principles, practice and administration: An industrial management tool for improving product quality and design and for reducing operating costs and losses. 1951: McGraw-Hill.
28.Slaughter, S.A., D.E. Harter, and M.S. Krishnan, Evaluating the cost of software quality. Communications of the ACM, 1998. 41(8): p. 67-73.
29.Grottke, M. and C. Graf. Modeling and predicting software failure costs. in 2009 33rd Annual IEEE International Computer Software and Applications Conference. 2009. IEEE.
30.Pressman, R.S., Software engineering: a practitioner's approach. 2010.
31.Hewett, R. and P. Kijsanayothin, On modeling software defect repair time. Empirical Software Engineering, 2009. 14(2): p. 165-186.
32.Song, Q., et al., Software defect association mining and defect correction effort prediction. IEEE Transactions on Software Engineering, 2006. 32(2): p. 69-82.
33.Ward, W.T., Calculating the real cost of software defects. Hewlett-Packard Journal, 1991. 42(4): p. 55-58.
34.Spiewak, R. and K. McRitchie, Using software quality methods to reduce cost and prevent defects. Journal of Software Engineering and Technology, 2008: p. 23-27.
35.Deissenboeck, F. and M. Pizka, Probabilistic analysis of process economics. Software Process: Improvement and Practice, 2008. 13(1): p. 5-17.
36.Engel, A. and M. Last, Modeling software testing costs and risks using fuzzy logic paradigm. Journal of Systems and Software, 2007. 80(6): p. 817-835.
37.Issa, A.A., F.A.A. Rub, and F.F. Thabata, Using test case patterns to estimate software development and quality management cost. Software Quality Journal, 2009. 17(3): p. 263-281.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top