|
[1] Respiration Effort [online] Available: http://www.everychina.com/m-vital-signsmonitor [2] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Dopper radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838-848, Mar. 2004. [3] C. Li, Y. Xiao, and J. Lin, “A 5GHz double-sideband radar sensor chip in 0.18 μm CMOS for non-contact vital sign detection,” IEEE Micro. Wireless Compon. Lett., vol. 18, pp. 494-496, no.7, Jul. 2008. [4] C. Li, X. Yu, C.-M. Lee, D. Li, L. Ran, and J. Lin, “High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13- μmCMOS for noncontact vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1410-1419, May 2010. [5] T.-Y. Kao, Y. Yan, T.-M. Shen, A Y.-K Chen, and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 4, pp. 1649-1659, Apr. 2013. [6] K. M. Chen, Y. Huang, J. Shang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, pp. 105–114, Jan. 2000. [7] Y. Xiao, J. Lin, O. Boric-Lubecke, and V. M. Lubecke, “Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2023-2032, May. 2006. [8] C. Li, V. M. Lubecke, O. Boric-Lubecke, J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp. 2046-2060, 2013. [9] C.-H. Tseng and C.-L. Chang, “Microwave push-pull power amplifier using metamaterial-based balun,” in Proc. 20th Asia-Pacific Microwave Conf., Dec. 2008, pp. 1-4. [10] H.-K. Chiou and J.-Y. Lin, “Symmetric offset stack balun in standard 0.13-μm CMOS technology for three broadband and low-loss balanced passive mixer design,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1529–1538, Jun. 2011 [11] W. Sen and C.-H. Lee, “Low-phase error and high isolation CMOS active balun,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun., 2014, pp. 1-4. [12] S.-C. Tseng, C.-C. Meng, C.-H. Change, C.-K. Wu and G.-W. Hung, “Monolithicbroadband Gilbert micromixer with an integrated marchand Balun using standard silicon IC process,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4362-4371, Dec. 2006. [13] P. Andreani and A. Fard, “A 2.3GHz LC-tank CMOS VCO with optimal phase noise performance,” Proc. Int. Solid-State Circuits Conf., pp. 691-700, 2006 [14] J.-C. Wu, T.-Y. Chin, S.-F. Chang, and C.-C. Chang, “2.45-GHz CMOS reflection-type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp.2180-2189, Oct. 2008. [15] B. Razavi, RF Microelectronics, Upper Saddle River, NJ, USA: Prentice-Hall, 1998. [16] 張勝富、張嘉展,無線通訊射頻晶片模組設計射頻晶片篇,全華,2015 年。 [17] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M. T. Yang, P. Schvan, and S. P. Voinigescu., "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, Jul. 2007. [18] 邱煥凱、林貴城,ADS 應用於射頻功率放大器設計與模擬,國立清華大學 出版社,2014 年 [19] P. Hsieh, J. Maxey and C. K. Yang, “Minimizing the supply sensitivity of CMOS ring oscillators by jointly biasing the supply and control voltage,” in Proc. Custom Integr. Circuit Conf. 2008. [20] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Companies, Inc., 2001. [21] Texas Instruments, Low Dropout Regulator LM1117 Data Sheet, Texas I n s t r u m e n t s I n c . , T e x a s , U S A [ o n l i n e ] Av a i l a b l e : http://www.ti.com/lit/ds/symlink/lm1117-n.pdf [22] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3143-3152, Dec. 2008.
|