跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/18 16:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳仕鈞
研究生(外文):Shih-Chun Wu
論文名稱:基於邊緣的稀疏點到稠密點深度演算法
論文名稱(外文):Edge-based Sparse to Dense Disparity Algorithm
指導教授:林昌鴻林昌鴻引用關係
指導教授(外文):Chang-Hong Lin
口試委員:林昌鴻
口試委員(外文):Chang-Hong Lin
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:84
中文關鍵詞:立體視覺稠密深度圖立體匹配。
外文關鍵詞:Stereo visionDense disparity mapStereo matching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
立體視覺被廣泛的應用在移動式機器人、3D物體重建以及手勢辨識等,而立體視覺的基礎就是物體的深度,因此需要利用影像配對演算法來得到物體的距離,影像配對演算法,是利用兩張立體影像找尋每一點的對應點,將這些點的位移量轉換為物體的深度。在這篇論文中,我們將提出一個演算法,此演算法是利用邊緣偵測器來找尋特徵點,接著利用兩張立體影像的特徵點來計算這些點的深度,但是這樣只有稀疏的深度圖,因此我們利用影像內插演算法來將剩餘的點填補起來,首先,我們利用邊緣來找尋每個物體的連通區域,接著計算出每個物體適合的深度値,但是還是會有些許的邊緣點沒有配對到或填補到,所以我們使用最近點影像內插演算法來將還未被賦予値的點填入最相近的値,最後我們就可以獲得稠密的深度圖。比較其他的方法,我們所提出的方法可以迅速的得到完整的深度圖而且擁有較高的準確度,根據結果,我們所提出的方法所獲得的深度圖比較連續及準確。
Stereo vision is widely used in mobile robots, three dimensional reconstruction and hand gesture recognition, and depth information is a necessity for these systems. Therefore, stereo matching algorithms are proposed to obtain depth information, and use corresponding relationship between pixels from pair images in the same scene to extract the disparity information. In this thesis, we propose an edge-based sparse to dense disparity matching algorithm. Firstly, we use edge detector to find feature points in pair images and obtain disparity of these edge pixels. In order to obtain a dense disparity map, we use two interpolating methods to interpolate a sparse disparity map to a dense disparity map. We use edges to find connected-components of each object, and then assign a proper disparity value to each object. Because a few edge pixels still do not have disparity values, we use the nearest-neighbor interpolation to interpolate the remaining pixels. Finally, we can generate a dense disparity map. Compared with prior arts, the proposed method can fast generate dense disparity map with higher accuracy. In the experiments, the results demonstrate that the disparities of objects are more continuous and smoother with the proposed method.
摘要 I
Abstract II
致謝 III
List of contents IV
List of figures VI
List of tables VIII
CHAPTER 1.INTRODUCTION 1
1.1 Motivation 1
1.2 Contributions 2
1.3 Thesis Organizations 3
CHAPTER 2.RELATED WORKS 4
CHAPTER 3.PROPOSED METHOD 7
3.1 Edge disparity calculation 8
3.1.1 Sobel edge detection [17] 8
3.1.2 Matching 9
3.1.3 Disparity refinement 11
3.2 Connected-component construction 15
3.2.1 Canny edge detection [20] 15
3.2.2 Dilation [22] 17
3.2.3 Connected-component construction 20
3.2.4 Erosion & contours construction 25
3.3 Interpolation 27
3.3.1 Disparity of contour construction 27
3.3.2 Interpolation 28
CHAPTER 4.EXPERIMENT RESULTS 32
4.1 Sparse disparity map comparison 32
4.2 Sparse to dense disparity map comparison 44
4.2.1 Accuracy comparison 44
4.2.2 Time complexity comparison 54
4.2.3 Window size selection 56
4.3 Dense disparity map comparison 57
4.4 Chart of prior algorithms 66
CHAPTER 5.CONCLUSIONS 68
Reference 69
[1] X. Zhu, H. Lu, X. Yang, Y. Li and H. Zhang, "Stereo Vision Based Traversable Region Detection for Mobile Robots," in Control Conference (CCC), 2013 32nd Chinese, Xi'an, 2013.
[2] T. Cao, Z.-Y. Xiang and J.-L. Liu, "Perception in Disparity: An Efficient Navigation Framework for Autonomous Vehicles With Stereo Cameras," IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp. 2935-2948, 5 2015.
[3] L. Wang, P. Wang, L. Cheng, Y. Ma, S. Wu, Y.-P. Wang and Z. Xu, "Detection and Reconstruction of an Implicit Boundary Surface by Adaptively Expanding A Small Surface Patch in a 3D Image," IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 11, pp. 1490-1506, 3 2014.
[4] Z. Ren, J. Meng and J. Yuan, "Depth camera based hand gesture recognition and its applications in Human-Computer-Interaction," in 2011 8th International Conference on Information, Communications and Signal Processing (ICICS), Singapore, 2011.
[5] A. Klaus, M. Sormann and K. Karner, "Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure," in 18th International Conference on Pattern Recognition, Hong Kong, 2006.
[6] I.-L. Jung and C.-S. Kim, "Robust view synthesis under varying illumination conditions using segment-based disparity estimation," in Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific, Hollywood, CA, 2012.
[7] G. Saygili, L. v. d. Maaten and E. A. Hendriks, "Improving segment based stereo matching using SURF key points," in 2012 19th IEEE International Conference on Image Processing, Orlando, FL, 2012.
[8] K. Subr, A. Majumder and S. Irani, "Greedy Algorithm for Local Contrast," in ICIAP'05 Proceedings of the 13th international conference on Image Analysis and Processing, 2005.
[9] A. Ray, S. Sanghavi and S. Shakkottai, "Improved Greedy Algorithms for Learning Graphical Models," IEEE Transactions on Information Theory, vol. 61, no. 6, pp. 3457-3468, 2015.
[10] F. Yi and I. Moon, "Image segmentation: A survey of graph-cut methods," in 2012 International Conference on Systems and Informatics (ICSAI), Yantai, 2012.
[11] A. Tuysuzoglu, W. C. Karl, I. Stojanovic, D. Castañòn and M. S. Ünlü, "Graph-Cut Based Discrete-Valued Image Reconstruction," IEEE Transactions on Image Processing, vol. 24, no. 5, pp. 1614-1627, 2015.
[12] H. Hirschmuller, "Accurate and efficient stereo processing by semi-global matching and mutual information," in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.
[13] G. A. Kordelas, D. S. Alexiadis, P. Daras and E. Izquierdo, "Content-Based Guided Image Filtering, Weighted Semi-Global Optimization, and Efficient Disparity Refinement for Fast and Accurate Disparity Estimation," IEEE Transactions on Multimedia, pp. 1520-9210, 2016.
[14] C. Stentoumis, A. Amditis and G. Karras, "Census-Based Cost on Gradients for Matching under Illumination Differences," in International Conference on 3D Vision (3DV), Lyon, 2015.
[15] M. M. Rahman, B. C. Desai and P. Bhattacharya, "A Feature Level Fusion in Similarity Matching to Content-Based Image Retrieval," in 9th International Conference on Information Fusion, Florence, 2006.
[16] M. Humenbergera, C. Zinnera, M. Webera and W. Kubingera, "A fast stereo matching algorithm suitable for embedded real-time systems," Computer Vision and Image Understanding, vol. 114, no. 11, pp. 1180-1202, 2010.
[17] I. Sobel, "An Isotropic 3x3 Image Gradient Operator," in Stanford A.I. Project, 1968.
[18] N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, Jan. 1979.
[19] D. Marv and T. Poggios, "Cooperative computation of stereo disparity," American Association for the Advancement of Science, vol. 194, no. 4262, pp. 283-287, 1976.
[20] J. Canny, "A Computational Approach to Edge Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vols. PAMI-8, no. 6, pp. 679-698, Nov. 1986.
[21] T. B. Moeslund, Introduction to Video and Image Processing: Building Real Systems, Springer-Verlag London, 2012.
[22] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, Inc., 1983.
[23] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2/E, Pearson Education, 2002, p. 524.
[24] K. Wu, E. Otoo and K. Suzuki, "Optimizing two-pass connected-component labeling algorithms," Pattern Analysis & Applications, vol. 12, no. 2, pp. 117-135, 2009.
[25] K. Suzuki, I. Horiba and N. Sugie, "Linear-time connected-component labeling based on sequential local operations," Computer Vision and Image Understanding, vol. 89, no. 1, pp. 1-23, 2003.
[26] D. Peña and A. Sutherland, "Non-parametric image transforms for sparse disparity maps," in 14th IAPR International Conference on Machine Vision Applications, Tokyo, 2015.
[27] M. College, "http://vision.middlebury.edu/stereo/data/," Middlebury College. [Online].
[28] A. Aguilar-González, M. Pérez-Patricio, M. Arias-Estrada and J.-L. Camas-Anzueto, "An FPGA Correlation-Edge Distance approach for disparity map," in 2015 International Conference on Electronics Communications and Computers (CONIELECOMP), Cholula, 2015.
[29] C. Ttofis, S. Hadjitheophanous, A. S. Georghiades and T. Theocharides, "Edge-Directed Hardware Architecture for Real-Time Disparity Map Computation," IEEE Transactions on Computers , vol. 62, no. 4, pp. 690-704, 2013.
[30] S. Lee, J. H. Lee, J. Lim and I. H. Suh, "Robust stereo matching using adaptive random walk with restart algorithm," Image and Vision Computing, vol. 37, pp. 1-11, 2015.
[31] A. Hosni, C. Rhemann, M. Bleyer, C. Rother and M. Gelautz, "Fast Cost-Volume Filtering for Visual Correspondence and Beyond," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp. 504-511, 2013.
[32] H. Hirschmüller, P. R. Innocent and J. Garibaldi, "Real-Time Correlation-Based Stereo Vision with Reduced Border Errors," International Journal of Computer Vision, vol. 47, no. 1, p. 229–246, 2002.
[33] J. Jiao, R. Wang, W. Wang, S. Dong, Z. Wang and W. Gao, "Local Stereo Matching with Improved Matching Cost and Disparity Refinement," IEEE MultiMedia, vol. 21, no. 4, pp. 16-27, 2014.
[34] C. Fiorio and J. Gustedt, "Memory Management for Union-Find Algorithms," in Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer Science, London, 1997.
[35] E. Trucco and A. Verri, Introductory Techniques For 3-D Computer Vision, Prentice Hall, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top