|
[1] Amazon EC2. Available from: http://aws.amazon.com/ec2/.
[2] E. Arianyan, H. Taheri, and S. Sharifian. “Novel heuristics for consolidation of virtual machines in cloud data centers using multi-criteria resource management solutions,” The Journal of Supercomputing, vol. 72, no. 2, pp. 688-717, 2016.
[3] L. A. Barroso, and U. Holzle. “The Case for Energy-Proportional Computing,” Computer, vol. 40, no. 12, pp. 33-37, 2007.
[4] A. Beloglazov, J. Abawajy, and R. Buyya. “Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing,” Future Generation Computer Systems, vol. 28, no. 5, pp. 755-768, 2012.
[5] A. Beloglazov, and R. Buyya. “Adaptive Threshold-Based Approach for Energy-Efficient Consolidation of Virtual Machines in Cloud Data Centers,” Proceedings of the 8th International Workshop on Middleware for Grids, Clouds and e-Science, pp.1-6, 2010.
[6] A. Beloglazov and R. Buyya. “Optimal Online Deterministic Algorithms and Adaptive Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual Machines in Cloud Data Centers,” Concurrency and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397-1420, 2012.
[7] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya. “A Taxonomy and Survey of energy-efficient data centers and Cloud Computing systems,” Advances in Computers, vol. 82, pp. 47-111, 2011.
[8] R. N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F.D. Rose, and R. Buyya, “CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms,” Software—Practice & Experience, vol. 41, no. 1, pp. 23-50, 2010.
[9] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield. “Live migration of virtual machines,” Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation, vol. 2, pp. 273-286, 2005.
[10] T. V. T. Duy, Y. Sato, and Y. Inoguchi. “Performance evaluation of a Green Scheduling Algorithm for energy savings in Cloud computing,” Parallel & Distributed Processing, Workshops and Phd Forum, IEEE International Symposium on, pp. 1-8, 2010.
[11] F. Farahnakian, T. Pahikkala, P. Liljeberg, and J. Plosila. “Energy aware consolidation algorithm based on K-nearest neighbor regression for cloud data centers,” Utility and Cloud Computing (UCC), 6th IEEE/ACM Internatonal Conference on, pp. 256-259, 2013.
[12] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, and H. Tenhunen. “Utilization Prediction Aware VM Consolidation Approach for Green Cloud Computing,” IEEE 8th International Conference on Cloud Computing, pp. 371-388, 2015.
[13] A. Gandhi, M. Harchol-Balter, R. Das, C. Lefurgy. “Optimal power allocation in server farms,” ACM SIGMETRICS Performance Evaluation Review, vol. 37, no. 1, pp. 157–168, 2009.
[14] J. Glanz. “Power, pollution and the internet.” The New York Times, 2012.
[15] H. P. Jiang, M. L. Weng, and W. M. Chen. “Dynamic Consolidation of Virtual Machines in Cloud Datacenters,” IEICE Transactions on Information and Systems, vol. E97-D, no. 7, pp. 1727-1730, 2014.
[16] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. “kvm: the Linux Virtual Machine Monitor,” Proceedings of the Linux Symposium, pp. 225–230, 2007.
[17] T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanabe, K. Matsuda, T. Maeda, T. Sakurai, and T. Furuyama. “Variable supply-voltage scheme for low-power high-speed CMOS digital design,” IEEE Journal of Solid-State Circuits, vol. 33, no. 3, pp. 454-462, 1998.
[18] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang. “Power and performance management of virtualized computing environments via lookahead control,” Cluster Computing, vol. 12, no. 1, pp. 1–15, 2009.
[19] H. Lin, X. Qi, S. Yang, and S. Midkiff. “Workload-Driven VM Consolidation in Cloud Data Centers,” Parallel and Distributed Processing Symposium (IPDPS), IEEE International, pp. 207-216, 2015.
[20] P. Mell, and T. Grance. The NIST Definition of Cloud Computing,” National Institute of Standards & Technology, 2011
[21] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov. “The Eucalyptus Open-source Cloud-computing System,” Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid. pp.124-131, 2009.
[22] K. Park and V.S. Pai. “CoMon: A Mostly-Scalable Monitoring System for PlanetLab,” ACM SIGOPS Operating Systems Review, vol. 40, no. 1, pp. 65-74, 2006.
[23] C. Reiss, J. Wilkes, and J. L. Hellerstein. “Google cluster-usage traces: format + schema,” Google Inc., White Paper, pp. 1-14, 2011.
[24] M. Rosenblum, V. Inc, and T. Garfinkel. “Virtual Machine Monitors: Current Technology and Future Trends,” Computer, vol. 38, no. 5, pp. 39-47, 2005.
[25] S. Son, G. Jung, and S. C. Jun. “An SLA-based cloud computing that facilitates resource allocation in the distributed data centers of a cloud provider,” The Journal of Supercomputing, vol. 64, no. 2, pp. 606-637, 2013.
[26] B. Tomlinson, M. Silberman, and J. White. “Can More Efficient IT Be Worse for the Environment,” Computer, vol. 44, no. 1, pp. 87-89, 2011.
[27] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya. “Cost of Virtual Machine Live Migration in Clouds: A Performance Evaluation,” Proceedings of the 1st International Conference on Cloud Computing, pp. 254 – 265, 2009.
[28] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng. “Understanding user behavior in large-scale video-on-demand systems,” Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems, vol. 40, no. 4, pp. 333-344, 2006.
[29] Z. Zhou, Z. Hu, and K. Li. “Virtual Machine Placement Algorithm for Both Energy-Awareness and SLA Violation Reduction in Cloud Data Centers,” Scientific Programming, vol. 2016, Article ID 5612039, 11 pages, 2016.
|