[1] Pang-Ning Tan, Michael Steinbach and Vipn Kumar, 資料探勘, 台灣培生出版, 2008
[2] Ming-Syan Chen, Jiawei Han and Philip S. Yu, “Data mining: An Overview from a Database Perspective”, IEEE Transactions on Knowledge and Data Engineering, VOL. 8(6), 1996
[3] J. W. Han and M. Kanber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2001
[4] Rakesf Agrawal, Tomasz Imieliński and Arun Swami, “Mining association rules between sets of items in large databases”, ACM SIGMOD international conference on Management of data, 207-216, Washington, D.C., 1993
[5] R. Agrawal and R. Srikant, “Mining Sequential Patterns”, International Conference on Data Engineering, 3-14, Taipei, Taiwan, 1995
[6] MacQueen J. B. “Some Methods for classification and Analysis of Multivariate Observations”, Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 281-297, Statistical Laboratory of the University of California, Berkeley, 1967
[7] Martin Ester, Hans-Peter Kriegel, Jiirg Sander and Xiaowei Xu, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”, International Conference on Knowledge Discovery and Data mining, 226-231, Oregon, Portland, 1996
[8] Dongming Chen, Yun Yan and Dongqi Wang, “Density Clustering Based on Border-Expanding”, International Conference on Natural Computation, 670-674, Xiamen, China, 2014
[9] Dominik Kellner, Jens Klappstein and Klaus Dietmayer, “Grid-Based DBSCAN for Clustering Extended Objects in Radar Data” , IEEE Intelligent Vehicles Symposium (IV), 365-370, Madrid, Spain, 2012
[10] Linmeng Zhang, Zhigao Xu and Fengqi Si, “GCMDDBSCAN: Multi-Density DBSCAN Based on Grid and Contribution”, IEEE International Conference on Dependable, Autonomic and Secure Computing, 502-507, Chengdu, Sichuan, China, 2013
[11] Chen Xiaoyun, Min Yufang, Zhao Yan and Wang Ping, “GMDBSCAN: Multi-Density DBSCAN Cluster Based on Grid”, IEEE International Conference on e-Business Engineering, 780-783, Xian, China, 2008
[12] 王繶梃, 「一個使用網格空間切割技術與改良式取樣概念之密度式分群演算法」, 屏東科技大學, 資訊管理學系, 碩士論文, 2011[13] 陳玟君, 「在動態資料庫中以較少運算重建頻繁樣式樹之方法」, 台灣科技大學, 電機工程學系, 碩士論文, 2014[14] 張智星, 資料分群與樣式辨認, URL: http://mirlab.org/jang/books/dcpr/
[15] Tian Zhang, Raghu Ramakrishnan and Miron Livny, “BIRCH: An Efficient Data Clustering Method for Very Large Databases”, ACM SIGMOD international conference on Management of data, 103-114, Montreal, Quebec, Canada, 1996
[16] Sudipto Guha, Rajeev Rastogi and Kyuseok Shim, “CURE: An Efficient Clustering Algorithm for Large Databases”, ACM SIGMOD international conference on Management of data, 73-84, Seattle, Washington, USA, 1998
[17] George Karypis, Eui-Hong Han and Vipin Kumar, “CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling”, IEEE Computer, VOL. 32(8), 68-75, 1999
[18] Wei Wang, Jiong Yang and Richard Muntz, “STING : A Statistical Information Grid Approach to Spatial Data mining”, International Conference on Very Large Data Bases, 186-195, Athens, Greece, 1997
[19] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos and Prabhakar Raghavan, “Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications”, ACM SIGMOD international conference on Management of data, 94-105, Seattle, Washington, USA, 1998
[20] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, Junjie Wu, and Sen Wu,“Understanding and Enhancement of Internal Clustering Validation Measures”, IEEE Transactions on Cybernetics, VOL. 43(3), 2013
[21] G. Karypis, E.H. Han, V. Kumar, “CHAMELEON: A hierarchical 765 clustering algorithm using dynamic modeling”, IEEE Computers, VOL. 32 (8), 68-75, 1999
[22] Veenman, C.J., M.J.T. Reinders, and E. Backer, “A maximum variance cluster algorithm”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9), 1273-1280, 2002
[23] Chang, H. and D.Y. Yeung, “Robust path-based spectral clustering”, Pattern Recognition, 41(1), 191-203, 2008
[24] Zahn, C.T., “Graph-theoretical methods for detecting and describing gestalt clusters”, IEEE Transactions on Computers, 100(1), 68-86, 1971
[25] Gionis, A., H. Mannila, and P. Tsaparas, “Clustering aggregation”, ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), 1-30, 2007
[26] Pasi Fränti and Olli Virmajoki, “Iterative shrinking method for clustering problems”, Pattern Recognition, 39 (5), 761-765, 2006
[27] Jeroen Kools , 6 functions for generating artificial datasets,
URL: http://www.mathworks.com/matlabcentral/fileexchange/41459-6-functions-for-generating-artificial-datasets
[28] Stan Salvador and Philip Chan, “Determining the Number of Clusters/Segments in Hierarchical Clustering/Segmentation Algorithms”, IEEE International Conference on Tools with Artificial Intelligence (ICTAI), 576-584, Boca Raton, Florida, USA, 2004
[29] Xiao-Feng Wang and De-Shuang Huang, “A Novel Density-Based Clustering Framework by Using Level Set Method”, IEEE Transactions on Knowledge and Data Engineering, VOL. 21(11), 1515-1531, 2009