跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 14:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃冠杰
研究生(外文):Guan-Jie Huang
論文名稱:無鐵芯式霍爾比流器之自我校正
論文名稱(外文):Self-calibration for Coreless Hall Effect Current Transformers
指導教授:陳南鳴陳南鳴引用關係
指導教授(外文):Nanming Chen
口試委員:陳南鳴
口試委員(外文):Nanming Chen
口試日期:2016-05-10
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:62
中文關鍵詞:比流器無鐵芯式霍爾比流器霍爾感測器熱漂移現象靈敏度溫度補償電子式電流互感器
外文關鍵詞:current transformerscoreless Hall-effect current transformersHall integrated circuitsthermal drift phenomenontemperature calibrationelectronic current transformers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
傳統比流器為電力系統量測中不可或缺的設備之一,但其鐵芯架構在故障發生時的飽和問題將造成電流的誤判斷,進而使得後端的保護電驛誤動作。目前針對改善傳統比流器鐵芯飽和問題及配合未來變電所智慧化的需求,已有多種電流量測技術問世。本研究採用之新型電流量測技術,設計使用霍爾感測器採角度對稱分佈的方式環繞於待測電力纜線上,稱作無鐵芯式霍爾比流器。但因霍爾感測器本身具有約2.5V的直流輸出偏壓,此偏壓將受到環境溫度影響而改變其大小值,此現象稱為熱漂移現象。此外,環境溫度亦影響霍爾感測器的靈敏度,這些都是影響無鐵芯式霍爾比流器量測準確度的因素。
本研究提出之自我校正法可以隨時偵測並校正無鐵芯式霍爾比流器之直流輸出偏壓,避免熱漂移現象的發生而影響電流量測準確度。此外,此方法亦可依環境溫度的改變補償量測靈敏度以得到較佳的量測準確度,最後亦針對IEC 60044-8電子式電流互感器規範進行電流準確度等級試驗,結果證明無鐵芯式霍爾比流器經本文所提出之自我校正法進行補償後,其百分比電流誤差可達計測用比流器規範中之準確等級Class 0.5。
Current transformers (CTs) are an indispensable equipment for power system current measurement. If a fault occurs in a power system, iron cores of CTs may face saturation problem and cause current measurement errors, resulting in false responses in protection relays. There are many kinds of current measurement technology to solve the saturation problem of iron cores of CTs and fulfill the requirements of intelligent substations. This research proposes a new current measurement technology using Hall integrated circuits (Hall ICs) symmetrically surrounding a power cable to measure the current flowing in it. This new electronic current transformer is called coreless Hall-effect current transformer (HCT). However, there is a dc offset voltage of about 2.5V existing in Hall ICs and the thermal drift phenomenon of this dc offset may arise due to ambient temperature. Furthermore, the sensitivity of Hall ICs may also be affected by ambient temperature. All of them are factors affecting accuracy of the HCT.
This thesis proposes an automatic dc offset calibration method to eliminate the dc offset voltages of Hall ICs. It can detect the dc offset voltage of Hall ICs at any time to avoid affecting current measurement accuracy due to thermal drift phenomenon. Another method proposed is for temperature calibration which can calibrate the sensitivity variation due to ambient temperature. This research also follows IEC 60044-8 electronic current transformer standard to perform the current accuracy test to verify the accuracy class of coreless Hall-effect current transformer. Results show that accuracy can achieve class 0.5 for measuring CTs.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖索引 VI
表索引 IX
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 1
1.3章節概述 2
第二章 電力發展趨勢概述 3
2.1 前言 3
2.2 變電所智慧化介紹 3
2.3 IEC 61850於變電所自動化的演進 4
第三章 傳統比流器與電子式電流互感器之介紹 8
3.1 前言 8
3.2 傳統比流器飽和問題 8
3.3 電子式電流互感器之分類與原理 11
3.3.1 Faraday原理之電子式電流互感器 11
3.3.2 Rogowski 線圈之電子式電流互感器 13
3.3.3 低功率電流互感器 14
3.3.4 傳統式霍爾電流互感器 15
3.3.5 無鐵芯式霍爾電流互感器 17
3.4 電子式電流互感器的特性 17
第四章 傳統比流器與電子式電流互感器標準規範 20
4.1 前言 20
4.2 傳統比流器標準規範 20
4.3 電子式電流互感器標準規範 22
第五章 無鐵芯式霍爾比流器之自我校正功能設計 25
5.1 前言 25
5.2 電源驅動電路設計 25
5.3 訊號感測電路與數位濾波功能設計 27
5.3.1 霍爾感測器之選用 27
5.3.2 電流感測電路架構與數位濾波器架構 28
5.4 直流輸出偏壓校正功能設計 30
5.5 溫度補償功能設計 34
5.5.1 溫度感測器之選用 34
5.5.2 溫度補償程式設計 37
第六章 實驗測試結果與討論 42
6.1 電流量測系統 42
6.2 直流輸出偏壓校正功能測試 43
6.3 數位濾波功能測試 46
6.4 溫度補償功能測試 49
第七章 結論與未來展望 56
7.1 結論 56
7.2 未來展望 56
參考文獻 58
[1]“IEEE Guide for the Applications of Current Transformers Used for Protective Relaying Purposes,” IEEE C37.110-2007, pp. 31-33.
[2]陳坤隆,「新型無鐵芯式霍爾比流器研製」,國立台灣科技大學博士論文,民國一百年十月。
[3]K. L. Chen and N. Chen, “A New Method for Power Current Measurement Using a Coreless Hall Effect Current Transformer,” IEEE Transactions on Instrumentation and Measurement, Vol. 60, No.1, pp. 158-169, Jan. 2011.
[4]行政院,「國家節能減碳總計畫核定本」,民國99年5月11日。
[5]經濟部能源局,「智慧電網總體規劃方案核定本」,民國101年9月3日。
[6]潘明宏,「電力系統運轉資料倉儲及其應用」,台電出國報告,民國99年2月1日。
[7]王永富,「監控自動化與電子互感器於變電所智慧化之應用研習」出國報告,台灣電力公司,民國102年8月,第9~12頁。
[8]李宏任,實用保護電驛,台北,全華科技,民國八十七年。
[9]陳彥儒,楊政和,黃昭榕,陳坤隆,陳南鳴,「電子式互感器應用於台電公司智慧型變電所之可行性研究」完成報告,台電綜合研究所,民國103年5月。
[10]T. W. Cease and P. Johnston, “A Magneto-Optic Current Transformer,” IEEE Transactions on Power Delivery, Vol. 5, No. 2, pp. 548-555, Apr. 1990.
[11]喬峨,安作平,羅承沐,王廷雲,光電式電流互感器的開發與應用21世紀互感器技術展望,中國大陸,西元2011年。
[12]W. F. Ray, “Rogowski Transducers for High Bandwidth High Current Measurement,” IEEE Colloquium on Low Frequency Power Measurement and Analysis, London, Nov. 2, 1994.
[13]A. Radun, “An Alternative Low-Cost Current-Sensing Scheme for High-Current Power Electronics Circuits,” IEEE Transactions on Industrial Electronics, Vol. 42, No. 1, pp. 78-84, Feb. 1995.
[14]梁銓延,物理光學,北京,機械工業出版社,西元1987年。
[15]高鵬,馬江泓,楊妮,高江杰,電子式互感器技術及發展近況,南方電網技術,第三卷,第三期,第39~42頁,中國大陸,西元2009年。
[16]劉延冰,電子式互感器原理、技術及應用,第59~61頁,北京,科學出版社,西元2009年。
[17]G. Frolov, O. Grudin and T. Warland, “Compensating Rogowski Coils for Current Measurement,” Electronic Engineering Times, No. 1511, pp.31-32, Feb. 2008.
[18]L. Cristaldi, A. Ferrero, M. Lazzaroni, R. T. Ottoboni, “A Linearization Method for Commercial Hall-effect Current Transducers,” IEEE Trans. Instrumentation and Measurement, Vol. 50, No. 5, pp. 1149-1153, Oct. 2011.
[19]LEM, “Isolated Current and Voltage Transducers Characteristics – Applications - Calculations,” 3rd Edition, pp. 9, 2004.
[20]D. K. Cheng, “Field and Wave Electromagnetics,” Canada:Addison-Wesley, 1989.
[21]陳彥儒,「具無線傳輸功能之新型電子式比流器設計」,國立台灣科技大學碩士論文,民國102年6月17日。
[22]Instrument Transformers-Part 1:Current Transformers, IEC Standard 60044-1, Feb. 2003.
[23]Instrument Transformers-Part 3:Combined Transformers, IEC Standard 60044-3, December 2002.
[24]Instrument Transformers-Part 6:Requirements for Protective Current Transformers for Transient Performance, IEC Standard 60044-6, Mar. 1992.
[25]IEEE Standard Requirements for Instrument Transformers, ANSI/IEEE Standard C57.13, July 2008.
[26]Instrument Transformers,中華民國國家標準CNS 11437,民國九十年十二月。
[27]Current Transformers,中華人民共和國國家標準GB 1208,Mar. 2007.
[28]Instrument Transformers – Part 8:Electronic Current Transformers, IEC Standard 60044-8, July 2002.
[29]IEEE Recommended Practice for Testing Electronic Transformers and Inductors, ANSI/IEEE Standard 389, Sept. 2007.
[30]IEEE Standard for Analog Inputs to Protective Relays from Electronic Voltage and Current Transducers, ANSI/IEEE Standard C37.92, Sept. 2005.
[31]Instrument Transformers – Part 8:Electronic Current Transformers, 中華人民共和國國家標準 GB/T 20840.8, Jan. 2007.
[32]IEEE Guide for the Application of Rogowski Coils Used for Protective Relaying Purposes, ANSI/IEEE Standard C37.235, Feb. 2008.
[33]梁進添,「含自給式電源之無鐵芯式霍爾比流器研製」,國立台灣科技大學碩士論文,民國101年1月3日。
[34]A1301 and A1302 Datasheets, Allegro MicroSystems, LLC., 2005.
[35]A1324, A1325 and A1326 Datasheets, Allegro MicroSystems, LLC., 2010.
[36]A1388 and A1389 Datasheets, Allegro MicroSystems, LLC., 2009.
[37]SS39ET/SS49E/SS59ET Series Datasheets, Honeywell International, Inc., 2013.
[38]MLX90290 Datasheets, Melexis Microelectronic Integrated Systems, Inc., 2014.
[39]EQ-730L Datasheets, Asahi Kasei Microdevices, Inc., 2012.
[40]EQ-731L Datasheets, Asahi Kasei Microdevices, Inc., 2012.
[41]EQ-732L Datasheets, Asahi Kasei Microdevices, Inc., 2012.
[42]EQ-733L Datasheets, Asahi Kasei Microdevices, Inc., 2012.
[43]AH49E Datasheets, Diodes, Inc., 2010.
[44]AH49F Datasheets, Diodes, Inc., 2014.
[45]AH49H Datasheets, Diodes, Inc., 2013.
[46]WSH135 Datasheets, Winson, Inc., 2013.
[47]WSH136 Datasheets, Winson, Inc., 2014.
[48]WSH137 Datasheets, Winson, Inc., 2014.
[49]WSH138 Datasheets, Winson, Inc., 2014.
[50]WSH315 Datasheets, Winson, Inc., 2014.
[51]WSH201 Datasheets, Winson, Inc., 2009.
[52]WSH202 Datasheets, Winson, Inc., 2012.
[53]I. N. Cholakova, T. B. Takov, R. T. Tsankov, and N. Simonne, “Temperature Influence on Hall Effect Sensors Characteristics,” 20th Telecommunications forum, Serbia, Belgrade, Nov. 20-22, 2012, pp. 967-970.
[54]M. -A. Paun, J. -M. Sallese, and M. Kayal, “Geometrical Parameters Influence on the Hall Effect Sensors Offset and Drift,” 2011 7th Conference on ph.D Research in Microelectronics and electronics, Madonna di Campiglio, Trento, Italy, Jul. 3-7, 2011, pp. 145-148.
[55]Dogan Irahim, Microcontroller Based Temperature Monitoring and Control, Elsevier Ltd., pp. 55-61, 2002.
[56]NI X Series Multifunction Data Acquisition, National Instruments Corporation, 2014.
[57]G. J. Huang, N. Chen and K. L. Chen, “Self-calibration Method for Coreless Hall Effect Current Transformer,” accepted for publication to Proceedings of 2016 IEEE Power & Energy Society General Meeting, Boston, USA, Jul. 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top