跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/15 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃子哲
研究生(外文):Zih-Jhe Huang
論文名稱:應用小波轉換與類神經網路於架空配電饋線高阻抗故障之偵測
論文名稱(外文):Using Wavelet Transform and Neural Network for High Impedance Faults Detection on Overhead Distribution Feeders
指導教授:辜志承辜志承引用關係
指導教授(外文):Jyh-Cherng Gu
口試委員:辜志承
口試委員(外文):Jyh-Cherng Gu
口試日期:2016-06-23
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:100
中文關鍵詞:高阻抗偵測小波轉換饋線末端設備
外文關鍵詞:high impedance detectionwavelet transformfeeder terminal unit
相關次數:
  • 被引用被引用:1
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著城鄉建設的發展,以架空被覆線路為主的郊區或偏遠地區之配電方式,其架設規模亦逐漸擴大,但因天然、環境、材料或人為疏失等因素,皆可能導致架空被覆線路斷落後的接地短路,其故障電流會隨接地阻抗的特性而異,有時傳統之過電流保護方式皆難以偵測,以致斷落於地之高壓導線或其伴隨之電弧閃絡,將對人員、動物或環境造成莫大之危害。本論文基於小波轉換理論與類神經網路,開發出適用於輻射型配電饋線末端設備(FTU)中之高阻抗偵測器,主要是利用3I0零序電流作為偵測高阻抗接地故障之依據。首先,應用小波轉換理論解析出高阻抗故障特徵訊號,再將此特徵信號透過類神經網路加以分類辨識,若判斷出高阻抗故障,即可產生識別訊號,經由饋線末端設備傳送至遠端配電調度中心,整體偵測架構具有分辨高阻抗故障類型及故障所在區段之功能。本文高阻抗偵測器分別透過實際饋線人工故障試驗資料,與高阻抗數學模型故障模擬資料進行訓練,最後,經由Matlab/Simulink模擬與Doble波形重現模擬器,重現真實高阻抗接地故障訊號並進行測試,結果顯示高阻抗故障偵測器可準確偵測各類型高阻抗接地故障,具有實際應用之價值。
Along with the development of urban or suburban areas, the scale of electrical infrastructure which mainly as overhead distribution line has been gradually expanded. Unfortunately, the overhead distribution line may broke or falling down due to natural disaster, environmental issues, material degradation or human error. However, the fault current is mainly dependent on grounding impedance characteristics. Most of time the current is so small that the fault condition shall hard to detect by exists protection relay. Usually, the falling down conductor may create an arcing once touch with ground. This arcing would danger living life or cause fire.
This thesis has been successfully developed an intelligent high impedance fault (HIF) detector for using in Feeder Terminal Unit (FTU). Generally, the zero-sequence current (3I0) is introduced to detecting HIFs. The wavelet transform is used for analyzing HIF feature signal and the back-propagation neural network is used for identification. If the HIF is detected by detector, the FTU will issue an identified signal and transmitted it to the remote side of distribution control center. As a result, not only the HIF fault can be detected but also the fault zone also will be located.
First of all, the intelligent HIF detector will be intensively trained by using some of actual test data in field and Matlab/Simulink simulation data. Then, The Matlab/Simulink simulation and Doble waveform reproducer are introduced to reproduce the recorded waveform of actual HIF grounding fault current for test. Finally, the test results show that the intelligent HIF detector can accurately detect various type of HIF grounding fault with high accuracy. It proves that the proposed detector have highly application value.
摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻探討 1
1.3 研究方法 3
1.4 論文架構 4
第二章 配電系統架空饋線保護方式 5
2.1 前言 5
2.2 配電電網之架構 5
2.3 國內架空被覆線路保護方式 7
2.4 國外架空被覆線路保護方式 10
2.4.1 機構式 10
2.4.2 電氣式 11
2.4.3 數位啟發式 12
2.4.3.1 專家系統 12
2.4.3.2 基因演算法 14
2.4.3.3 時頻分析演算法 15
2.5 其他高阻抗偵測演算法 17
2.6 本章小結 19
第三章 高阻抗故障偵測 21
3.1 前言 21
3.2 高阻抗故障之電氣特性 21
3.3 取樣定理[33] 22
3.4 小波轉換法 23
3.4.1 原理 23
3.4.2 連續與離散小波 25
3.4.3 小波轉換種類 27
3.5 人工神經網路 29
3.5.1 原理 29
3.5.2 神經網路種類 33
3.5.2.1 倒傳遞神經網路 34
3.5.2.2 霍普菲爾神經網路 38
3.5.2.3 幅狀基底函數神經網路 40
3.6 應用於高阻抗特徵訊號 42
3.7 本章小結 46
第四章 饋線末端自動化偵測系統 47
4.1 前言 47
4.2 饋線自動化功能概述 47
4.3 饋線自動化系統設備與機制介紹 50
4.4 改良型FTU應用於高阻抗故障偵測 57
4.4.1 改良型FTU之DSP硬體介紹 57
4.4.2 改良型FTU之DSP軟體介紹 62
4.5 本章小結 66
第五章 高阻抗故障偵測器驗證 67
5.1 前言 67
5.2 環境測試平台之架設 67
5.3 高阻抗故障資料來源簡介 69
5.3.1 商品化電驛於高阻抗故障功能之實測 70
5.3.2 應用Matlab/simulink於模擬系統之建立 72
5.3.3 高阻抗故障偵測器於測試系統之建立 75
5.4 測試結果 76
5.4.1 商品化電驛實測結果 76
5.4.2 Matlab/simulink模擬訊號實測結果 83
5.4.3 高阻抗故障偵測器實測結果 84
5.5 本章小結 89
第六章 結論與未來方向 90
6.1 結論 90
6.2 未來研究方向 90
參考文獻 92
附錄 A COMTRADE格式轉檔流程[60] 98
[1]J. Tengdin, et al, “High Impedance Fault Detection Technology,” Report of IEEE Power System Relay Committee Working Group D15, pp. 1-12, March 1996.
[2]R. H. Kaufman, J. C. Page, “Arcing fault protection for low voltage power distribution systems- nature of the problem, ” AIEE Trans, pp. 160-167, June 1960.
[3]R. E. Lee, L. A. Kilar, “Summary and status report on research to detect and de-energize high impedance faults on three phase four wire distribution circuit,” IEEE PES Summer Meeting, Vancouver,B. C. ,Canada, Paper No. A79-516-6, July 1979.
[4]I. Lee, “High impedance fault Detection using third harmonics current,” EPRI Report EL-2430, Prepared by Hughes Aircraft Company, June 1982
[5]B. M. Aucoin, J. Zeigler and B. D. Russell, “Feeder Protection and Monitoring System, Part Ⅰ: Design, Implementation and Testing,” IEEE Trans. on Power Apparatus and Systems, Vol. PAS-104, No. 4, pp. 873-880, April 1985.
[6]B. M. Aucoin, J. Zeigler and B. D. Russell, “Feeder Protection and Monitoring System, Part Ⅱ: Staged Fault Test Demonstration,” IEEE Trans. on Power Apparatus and Systems, Vol. PAS-104, No. 6, pp.1456-1462, June 1985.
[7]SEDIGHIZADEH, M., A. REZAZADEH and Nagy I. ELKALASHY. “Approaches in High Impedance Fault Detection a Chronological Review,” Advances in Electrical and Computer Engineering, Vol. 10, Number 3, 2010.
[8]Syed Muhammad Atif Saleema, Adel M. Sharaf, “A fuzzy ARTMAP based high impedance arc fault detection scheme,” Electrical and Computer Engineering Canadian Conference, Niagara Falls ON, p871-876, 4-7 May 2008.
[9]S.R. Samantaray, B.K. Panigrahi and P.K. Dash, “High impedance fault detection in power distribution networks using time-frequency transform and probabilistic neural network,” IET Generation, Transmission & Distribution,Vol. 2, Issue 2, March 2008 ,pp.261 - 270
[10]Hong, Y.-Y. and W.-S. Huang, “Locating High-Impedance Fault Section in Electric Power Systems Using Wavelet Transform,k-Means, Genetic Algorithms, and Support Vector Machine,” Mathematical Problems in Engineering, Vol. 2015, p.1-9, 2015.
[11]Mahari, A. and H. Seyedi, “High impedance fault protection in transmission lines using a WPT-based algorithm,” International Journal of Electrical Power & Energy Systems, Vol. 67, Pages 537-545, May 2015.
[12]José Rubens Macedo1, José Wilson Resende1, Carlos Augusto Bissochi Jr, Daniel Carvalho, Fernando C. Castro “Using Probabilistic Neural Network for Classification High Impedance Faults on Power Distribution Feeders,” IET Generation, Transmission & Distribution, Vol. 2, Issue 2, 2013.
[13]黃慶連、陳澤生、朱惠勇、周宏亮,「交流電弧模型及高阻抗接地故障現象之諧波分析」,台電工程月刊,第426期,第8~17頁,民國七十三年。
[14]H.-Y. Chu, M.-T. Chen and C.-L. Huang, “High Impedance Fault Tests on The Taipower Primary Distribution System,” Electric Power Systems Research, Vol. 19, pp. 105-114, 1990.
[15]羅震飛、陳士麟,「高阻抗故障偵測方法之設計」,台電工程月刊,第526期,第81~93頁,民國八十一年。
[16]陳士麟、連畊宇、鄧志淦、陳崇立、林財明,「配電線高阻抗故障偵測器之研製」,台灣電力公司研究報告,民國八十三年。
[17]連畊宇、鄧志淦、陳士麟、張志聲、沈弘彥、林財明,「配電線高阻抗故障偵測器之研究」,台電工程月刊,第562期,第27-39頁,民國八十四年。
[18]連畊宇、王文郁、賴漢倫、陳士麟、廖清榮、廖政立、林財明,「高阻抗數位電驛實測與改良」,台電工程月刊,第591期,第56-71頁,民國八十五年。
[19]陳士麟、連畊宇、王文郁、顏惠結、郭宗益、楊金石、廖政立、廖清榮、翁進興、沈弘彥、沈哲生、陳瑞檄、林財明,「高阻抗數位電驛實測與改良」,台灣電力公司研究報告,民國八十六年。
[20]楊明達,「應用小波轉換及神經網路於配電線路高阻抗故障偵測之研究」,博士學位論文,國立台灣科技大學,2006年1月。
[21]Depew, A.C., Parsick, J.M., Dempsey, R.W., et al. “Field experience with high-impedance fault detection relays,” IEEE PES Transmission and DistributionConf. and Exhibition, Dallas, TX, pp. 868-873, 2006
[22]W. Tyska, B. D. Russell, B. M. Aucoin, “A Microprocessor-BasedDigital Feeder Monitor with High Impedance Fault Detection,” 47thAnnual Texas A&M Relay Conference March 21-23,1994
[23]S. M. Shahrtash, M. Sarlak, “High Impedance Fault Detection Using Harmonics Energy Decision Tree Algorithm,” International Conference on Power System Technology, PowerCon2006, pp.1 - 5, 22-26 Oct. 2006.
[24]R. Sedighi, M.-R. Haghifam, O.P. Malik, “Soft computing applications in high impedance fault detection in distribution systems” Electric Power Systems Research ,Vol. 76, Issues 1-3, September 2005, Pages 136-144
[25]Amin Ghaderi, Hossein Ali Mohammadpour, Herbert L. Ginn, III, Yong-June Shin,” High-Impedance Fault Detection in the Distribution Network Using the Time-Frequency-Based Algorithm” IEEE Transactions on Power Delivery, Volume 30, Issue 3, pp.1260-1268, 2015
[26]Valero Masa, J. C Maun, S. Werben, “Methodology to Describe High Impedance Faults in Solidly Grounded MV Networks,” 21st International Conference on Electricity Distribution, 2011.
[27]V Valero Masa, S. Werben, J. C Maun, “Incorporation of Data-Mining in Protection Technology for High Impedance Fault Detection”, IEEE Power and Energy Society General Meeting, 2012, pp. 1-8.
[28]Suresh Gautam, Sukumar M. Brahma, “Detection of High Impedance Fault in Power Distribution Systems Using Mathematical Morphology”, IEEE Transactions on Power System, Vol. 28, NO. 2, May 2013, pp. 1226-1234
[29]M.G.M Zanjani, H.K karegar, H.A Niaki, M.G.M Zanjani,” Application of PMUs for High Impedance Fault Detection of Distribution Network by Considering Effect of Transformer Vector Group.”, IEEE Electrical Power Distribution Networks, April-May 2013, pp. 1-7.
[30]J. Tengdin, et al, “High Impedance Fault Detection Technology,” Report of IEEE Power System Relay Committee Working Group D15, pp. 1-12, March 1996.
[31]J. R. Macedo, J. W. Resende, C. A. Bissochi Jr, Daniel Carvalho, Fernando C. Castro, “Proposition of an interharmonic-based methodology for high-impedance fault detection in distribution systems” IET Generation, Transmission & Distribution, Volume 9, Issue 16, November 2015, pp.2593-2601
[32]D. I. Jeerings and J. R. Linders, “Unique Aspects of Distribution System Harmonics due to High Impedance Ground Faults,” IEEE Transactions on Power Delivery, Vol. 5, Issue 2, pp. 1086-1094, April 1990.
[33]James, H. M., Romald, W. S., and Mark, A. Y., Signal Processing First, Pearson Education International, 2003.
[34]陳又琨,「應用小波轉換於直流電力系統之串聯電弧故障偵測」,碩士學位論文,國立台灣科技大學,2014年7月。
[35]A. Harr, “Theorie der Orthogonalen Funkionen-systeme,” Mathematische Annalen, Vol.69, pp.331-371, 1910.
[36]A. Grossmann and J. Morlet, “Decomposition of Hardy function into Square Integrable Wavelets of Constant Shape,” SIAM J. Math. Anal., Vol.15, No.4, pp.736-783, 1984.
[37]黃君維,「應用小波轉換於鐵磁共振之偵測與保護」,碩士學位論文,國立台灣科技大學,2013年6月。
[38]C. S. Burrus, R. A. Gopinath and H. Guo, “Filter Banks and The Discrete Wavelet Transform,” Introduction to Wavelet and Wavelet Transforms A Primer, Prentice-Hall, New Jersey, 1998.
[39]王意如,「小波轉換應用於光纖感測之研究」,碩士學位論文,國立中央大學,2006年7月。
[40]黃烟宏,「連續小波轉換應用於基樁完整性檢測之研究」,碩士學位論文,國立成功大學,2006年7月。
[41]維基百科莫萊小波https://zh.wikipedia.org/wiki/%E8%8E%AB%E8%90%8A%E5%B0%8F%E6%B3%A2_(Morlet_wavelet), 2016.
[42]維基百科人工神經網絡https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C, 2016.
[43]王奕鈞,「神經網路應用於地籍坐標轉換之研究」,碩士學位論文,國立政治大學,2006年6月。
[44]類神經網路概述及實例bidm.stat.fju.edu.tw/school/DOWNLOAD/neural.doc, 2016.
[45]J.J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” in Proceedings of the National Academy of Sciences, Vol. 79, pp. 2554-2558, April 1982.
[46]J. J. Hopfield and D. W. Tank, “'Neural' computation of decisions in optimization problems,” Biological Cybernetics, Vol. 52, pp. 141 - 152, 1985.
[47]王錦富,「以霍普菲爾-坦克類神經網路解決行動代理者規劃問題」,碩士學位論文,國立中山大學,2006年6月。
[48]K. Gurney, An Introduction to Neural Networks, 1997
[49]張斐章、張麗秋,類神經網路導論,滄海圖書資訊股份有限公司,2000。
[50]Bradley R. Williams, David G. Walden. Distribution Automation Strategy for the Future., IEEE Computer Application in Power, 1997.
[51]David G. Hart, David Uy, James Northcote-Green, Carl LaPlace, Damir Novosel, CIGRE WG23.05. Integrated digital substation protection and control system., 1998.
[52]David G. Hart, David Uy, James Northcote-Green, Carl LaPlace, Damir Novosel, Automated Solutions For Distribution Feeders., IEEE Computer Applications in Power, October, 2000.
[53]國家電網公司採購標準(配電自動化卷 配電終端冊) 饋線終端FTU 通用技術規範
[54]F. Mekic , K. Alloway, C. Angelo and R. Goodin, “fault detection isolation and restoration on the feeder (FDIR): pick your technology,” 21st International Conference on Electricity Distribution, pp.0366, Frankfurt, 6-9 June 2011
[55]台灣電力股份有限公司,「配電系統被覆線裝置斷線事故即時偵測與防範對策研究」,2016年
[56]Texas Instruments Inc.,TMS320C6711D Floating-Point Digital Signal Processor (Rev. B), June 2006
[57]Texas Instruments Inc., TMS320C6712, TMS320C6712C Floating-Point Digital Signal Processors (Rev. M), November 2005
[58]Texas Instruments Inc., TMS320C6713 Floating-Point Digital Signal Processor (Rev. L), November 2005
[59]GSG:CCSv5 Overview http://processors.wiki.ti.com/index.php/GSG:CCSv5_Overview, 2015.
[60]Gosalia, J., and Tierney, D., Tutorial on Using Comtrade Files for Relay Testing, Washington, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top