|
[1]D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533-536, 1988. [2]M. D. Zeiler, and R. Fergus, “Visualizing and Understanding Convolutional Networks,” Computer vision–ECCV, vol. 8689, no. 1, pp. 818-833, Sep. 2014. [3]A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification with Deep Convolutional Neural Networks,” In NIPS, vol. 2, pp. 1097-1105, Dec. 2012. [4]V. Nair, and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines,” ICML, pp. 807-814, Jun. 2010. [5]M. D. Zeiler, Krishnan, D., Taylor, G. W., and Fergus, R. “Deconvolutional Networks,” In Proc. IEEE Conf. CVPR, pp. 2528-2535, Jun. 2010. [6]Y. Jia. Caffe: An open source convolutional architecture for fast feature embedding, online available on: http://caffe.berkeleyvision.org/, 2013. [7]G. Qiu, “Color Image Indexing Using BTC,” IEEE Trans. Image Process., vol. 12, no. 1, Jan. 2003. [8]M. R. Gahroudi, and M. R. Sarshar, “Image retrieval based on texture and color method in BTC-VQ compressed domain,” IEEE Int. Symp. SPIA, Feb. 2007. [9]F. X. Yu, H. Luo, and Z. M. Lu, “Colour image retrieval using pattern co-occurrence matrices based on BTC and VQ,” Electronics Lett., 20th, vol. 47, no. 2, pp.93-101, Jan. 2011. [10]S. Silakari, M. Motwani, and M. Maheshwari, “Color image clustering using block truncation algorithm,” IJCSI, vol. 4, no. 2, pp.31-35, Oct. 2009. [11]J. M. Guo, and H. Prasetyo, “Content-based image retrieval using features extracted from halftoning-based block truncation coding,” IEEE Trans. Image Process., vol.24, no.3, pp.1010-1024, Mar. 2015. [12]J. M. Guo, H. Prasetyo, and J. H.Chen, “Content-based image retrieval using error diffusion block truncation coding features,” IEEE Trans. CSVT, vol.25, no.3, pp.466-481, Mar. 2015. [13]J. M. Guo, H. Prasetyo, and N. J. Wang, “Effective image retrieval system using dot-diffused block truncation coding features,” IEEE Trans. Multimedia, vol. 17, no. 9, pp. 1576-1590, Jun. 2015. [14]T. W. Chiang, and T. W. Tsai, “Content-based image retrieval via the multiresolution wavelet features of interest,” J. Inf. Technol. Appl, vol. 1, no. 3, pp. 205-214, Dec. 2006. [15]Z. M. Lu, and H. Burkhardt, “Colour image retrieval based on DCT-domain vector quantization index histograms,” Electronics Lett., vol. 41, no. 17, Aug. 2005. [16]T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of texture measures with classification based on feature distributions,” Pattern Recognit., vol. 29, no. 1, pp. 51-59, Jan. 1996. [17]X. Tan, and B. Triggs, “Enhanced local texture feature sets for face recognition under difficult lighting conditions,” IEEE Trans. Image Process., vol. 19, no. 6, pp. 1635-1650, Jun. 2010. [18]Z. Guo, et al., “Rotation invariant texture classification using LBP variance with global matching,” Pattern Recognit., vol. 43, no.3, pp. 706-716, Mar. 2010. [19]M. Subrahmanyam, R. P. Maheshwari, and R. Balasubramanian, “Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking,” Signal Process., vol. 92, no. 6, pp. 1467-1479, Jun. 2012. [20]B. Zhang, Y. Gao, S. Zhao, and J. Liu, “Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor,” IEEE Trans. Image Process., vol. 19, no. 2, pp. 533-544, Feb. 2010. [21]S. Murala, R. P. Maheshwari, and R. Balasubramanian, “Local tetra patterns: a new feature descriptor for content-based image retrieval,” IEEE Trans. Image Process., vol. 21, no. 5, pp. 2874-2886, May 2012. [22]D. Lowe, “Distinctive image feature from scale-invariant keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004. [23]J. Sivic, and A. Zisserman, “Video google: A text retrieval approach to object matching in videos,” In ICCV, pp. 1470-177, 2003. [24]I. Elsayad, et al., “A new spatial weighting scheme for bag-of-visual-words,” In CBMI, pp. 1-6, Jun. 2010. [25]X. Chen, X. Hu, and Shen, X. “Spatial weighting for bag-of-visual-words and its application in content based image retrieval,” In Proc. Int. Conf. Adv. Knowl. Discovery Data Mining, pp. 27-30, 2009. [26]W. Bouachir, M. Kardouchi, and N. Belacel, “Improving bag of visual words image retrieval: A fuzzy weighting scheme for efficient indexation,” In Proc. Int. Conf. Signal-Image Technol. Internet-Based Syst., pp. 215-220, 2009. [27]L. Zhu, et al., “Weighting scheme for image retrieval based on bag of visual-words,” IET Image Process, vol. 8, no. 9, pp. 509-518, 2013. [28]M. Saadatmand-Tarzjan, and H. A. Moghaddam, “Gabor wavelet correlogram algorithm for image indexing and retrieval,” 18th Intl. Conf. Pattern Recognit., vol. 2, pp. 925-928, 2006. [29]C. H. Lin, R. T. Chen, and Y. K. Chan, “A smart content-based image retrieval system based on color and texture feature.” Image and Vision Computing, vol. 27, no. 6, pp. 658–665, May 2009. [30]N. Jhanwar, et al., “Content based image retrieval using motif co-occurrence matrix,” Image and Vision Computing, vol. 22, pp. 1211–1220, Dec. 2004. [31]P. W. Huang, and S. K. Dai, “Image retrieval by texture similarity,” Pattern Recognit., vol. 36, no. 3, pp. 665–679, Mar. 2003. [32]T. C. Lu, and C. C. Chang, “Color image retrieval technique based on color features and image bitmap,” Inf. Process. Manage, vol. 43, no. 2, pp. 461-472, Mar. 2007. [33]P., Poursistani, H. Nezamabadi-pour, R. A. Moghadam, and M. Saeed, “Image indexing and retrieval in JPEG compressed domain based on vector quantization,” Math. and Comp. Modeling, vol. 57, no. 5-6, pp. 1005-1017, 2013. [34]M. E. ElAlami, “A novel image retrieval model based on the most relevant features,” Knowledge-Based Syst., vol. 24, no. 1, 2011. [35]M. Saadatmand-Tarzjan, and H. A. Moghaddam, “A novel evolutionary approach for optimizing content based image retrieval,” IEEE Trans. System, Man, and Cybernetics, vol. 37, no. 1, pp. 139-153, 2007. [36]M. Subrahmanyam, R. P. Maheshwari, and R. Balasubramanian, “Expert system design using wavelet and color vocabulary trees for image retrieval,” Expert Systems with Applications, vol. 39, no. 5, pp. 5104-5114, 2012. [37]F. Mahmoudi, and J. Shanbehzadeh, “Image retrieval based on shape similarity by edge orientation autocorrelogram,” Pattern Recognit., vol. 36, no. 8, pp. 1725-1736, 2003. [38]C. H. Lin, et al., “Fast color-spatial feature based image retrieval methods,” Expert Systems with Applications, vol. 38, no. 9, pp. 11412-11420, 2011. [39]G. H. Liu, Z. Y. Li, L. Zhang, and Y. Xu, “Image retrieval based on micro-structure descriptor,” Pattern Recognit., vol. 44, no. 9, pp. 2123-2133, 2011. [40]B. S. Manjunath, et al., “Color and texture descriptors,” IEEE Trans. Circuit and Systems for Video Tech., vol. 11, no. 6, pp. 703-715, 2001. [41]G. H. Liu, et al., “Image retrieval based on multitexton histogram,” Pattern Recognit., vol. 43, no. 7, pp. 2380-2389, 2010. [42]X. Wang, and Z. Wang, “A novel method for image retrieval based on structure element’s descriptor,” Journal of Visual Communication and Image Representation, vol. 24, no. 1, pp. 63-74, 2013. [43]S. E. Robertson, and S. Walker, “Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval,” In Proc. 17th Annu. Int. ACM SIGIR Conf. Res. Develop. Inform. Retr, pp. 232-241, 1994. [44]H. Jegou, M. Douze, and C. Schmid, “On the burstiness of visual elements,” In Proc. IEEE Conf. CVPR, pp. 1169-1176, Jun. 2009. [45]L. Zheng, S. Wang, and Q. Tian, “Lp-Norm IDF for scalable image retrieval,” IEEE Trans. Image Process., vol. 23, no. 8, pp. 3604-3617, Aug. 2014. [46]X. Wang, et al., “Contextual weighting for vocabulary tree based image retrieval.” In ICCV, pp. 209-216, 2011. [47]H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak geometric consistency for large scale image search,” In ECCV, pp. 304-317, 2013. [48]Z. Liu, et al., “Contextual hashing for large-scale image search,” IEEE Trans. Image Process., vol. 23, no. 4, pp. 1606-1614, Apr. 2014. [49]B. S. Manjunath, and W. Y. Ma, “Texture feature for browsing and retrieval of image data,” IEEE Trans. Pattern Anal. Machine Intel. vol. 18, no. 8, pp. 837-842, 1996. [50]M. Kokare, P. K. Biswas, and B. N. Chatterji, “Texture image retrieval using new rotated complex wavelet filters,” IEEE Trans. Systems, Man, Cyber, vol. 33, no. 6, pp. 1168-1178, 2005. [51]M. Subrahmanyam, et al., “Modified color motif co-occurrence matrix for image indexing,” Comp. Electrical Eng., vol. 39, no. 3, pp. 762-774, 2013. [52]R. Kwitt, and A. Uhl, “Lightweight probabilistic texture retrieval,” IEEE Trans. Image Process., vol. 19, no. 1, pp. 241-253, Jan. 2010. [53]N. E. Lasmar, and Y. Berthoumieu, “Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms,” IEEE Trans. Image Process., vol. 23, no. 5, pp. 2246-2261, May. 2014. [54]T. Ojala, et al., “Texture discrimination with multidimensional distributions of signed gray-level differences,” Pattern Recognit., vol. 34, no. 3, pp. 727-739, 2001. [55]J. Chen, et al., “WLD: A robust local image descriptor.” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1705-1720, Sep. 2010. [56]A. Satpathy, X. Jiang, and H. L. Eng, “LBP-based edge-texture features for object recognition,” IEEE Trans. Image Process., vol. 23, no. 5, May 2014. [57]A. Porebski, N. Vandenbroucke, and L. Macaire, “Haralick feature extraction from LBP images for color texture classification,” Proc. 1st Workshops Image Process. Theory, Tools Appl. (IPTA), pp. 1-8, 2008. [58]F. Bianconi, et al., “Rotation-invariant colour texture classification through multilayer CCR.” Pattern Recognit. Lett., vol. 30, no. 8, pp. 765-773, 2009. [59]G. Paschos, and M. Petrou, “Histogram ratio features for color texture classification,” Pattern Recognit. Lett., vol. 24, no. 1–3, pp. 309-314, 2003. [60]M. A. Hoang, et al., “Color texture measurement and segmentation,” Signal Process., vol. 85, no. 2, pp. 265-275, 2005. [61]J. J. Junior, P. C. Cortez, and A. R. Backes, “Color texture classification using shortest paths in graphs,” IEEE Trans. Image Process., vol. 23, no. 9, pp. 3751-3761, Sept. 2014. [62]R. Arandjelovic, and A. Zisserman, “All about VLAD,” In Proc IEEE Conf. CVPR, pp. 1578-1585, 2013. [63]C. Szegedy, et al., “Going deeper with convolutions,” In Proc IEEE Conf. CVPR, pp. 1-9, 2015. [64]K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image recognition.” arXiv preprint arXiv: 1409.1556, 2014. [65]M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv: 1312.4400, 2013. [66]J. Wan, et al., “Deep learning for content-based image retrieval: A comprehensive study,” In Proc. ACM MM, pp. 157-166, 2014. [67]O. Russakoveky, et al., “Imagenet Large Scale Visual Recognition Challenge,” IJCV, 2015. [68]Corel Photo Collection Color Image Database, [online] http://wang.ist.psu.edu/. [69]SIPI-USC Brodatz texture image database, [online] http://sipi.usc.edu/database/database.php?volume=textures. [70]MIT-Vision Texture (VisTex) image database, [online] http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html. [71]G. J. Burghouts, and J. M. Geusebroek, “Material-specific adaptation of color invariant features,” Pattern Recognit. Lett., vol. 30, pp. 306-313, 2009. [72]H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak geometric consistency for large scale image search,” In ECCV, pp. 304-317, 2013. [73]A. R. Backes, D. Casanova, and O. M. Bruno, “Color texture analysis based on fractal descriptors,” Pattern Recognit., vol. 45, no. 5, pp. 1984-1992, 2012. [74]Outex texture image database, [online] http://www.outex.oulu.fi/index.php?page=outex_home. [75]KTH-TIPS texture image database, [online]http://www.nada.kth.se/cvap/databases. [76]D. Nister, and H. Stewenius, “Scalable recognition with a vocabulary tree,” IEEE Conf. CVPR, vol. 2, pp. 2161-2168, Jun. 2006
|