跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 11:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林季彥
研究生(外文):JI-YAN LIN
論文名稱:應用於智慧型手機上天線微型化之負阻抗轉換器
論文名稱(外文):Negative Impedance Converter for Mobile Phone Antenna Minimization
指導教授:陳筱青陳筱青引用關係
指導教授(外文):Hsiao-Chin Chen
口試委員:陳筱青
口試委員(外文):Hsiao-Chin Chen
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:106
中文關鍵詞:負阻抗電路Non-Foster匹配4GLTE頻段生醫植入發射機
外文關鍵詞:Negative impedance circuitNon-Foster matchingImplantable biomedical applicationstransmitter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,分為兩個部分,皆使用台積電CMOS 0.18 μm 1P6M製程來實現電路。第一個部分旨在探討負阻抗轉換器電路,因為微型化天線在近幾年被廣泛的應用於特高頻(Ultra high frequency, UHF),然而,如果使用被動Foster阻抗匹配網路來做阻抗匹配的話,天線的有效頻寬(efficiency-bandwidth)將會被限制。因此,本研究第一個議題欲透過負阻抗轉換器電路積體化解決上述問題,並分成兩個部分分析負阻抗轉換器電路,其一為應用於偶極天線的雙端負阻抗轉換器,操作頻帶為900MHz-1100MHz,使用兩組交錯耦合(Cross-coupling)電路設計而成; 其二為應用於IFA天線的單端負阻抗轉換器電路,操作頻帶為3400MHz-3800MHz。第二部份設計並實作了一個應用於生醫頻帶(MICS Band)的植入式生醫訊號量測系統。類比數位轉換器(Analog to Digital Converter)會將接收到的生理訊號作轉換,而將轉換的訊號與發射機(Transmitter)的載波結合之後得到的資料送出。此系統使用了能量獲取(Energy Harvesting)的技術來當作整體系統的電源供給,同時也使用這個信號透過注入鎖定式除頻器(Injection-Lock Frequency Divider)產生發射機的載波訊號,接著將資料透過開關調變(On-Off Keying, OOK)電路結合載波訊號再藉由功率放大器(Power Amplifier)放大。
In this thesis, the negative impedance converter (NIC) and an implantable biomedical monitoring system which are implemented by using TSMC CMOS 0.18μm 1P6M process are proposed. In recent years, antenna miniaturization has been widely used in the UHF (Ultra high frequency, UHF). The effective bandwidth of the antenna (efficiency-bandwidth) is limited by using the passive foster matching network because of the high quality factor. To tackle this problem, the two types of NIC are integrated and proposed. The differential NIC which consists of cross-coupled pairs is suitable for 0.9 GHz-1.1 GHz and applied to the dipole antenna for non-foster impedance matching. The single-ended NIC is suitable for 3.4 GHz-3.8 GHz and applied to IFA antenna for non-foster impedance matching. The implantable biomedical monitoring system comprises of the power management and the biomedical signal process. In the power management, the RF-DC converter is used to convert the RF power into the DC power required for the regulator to supply rest building blocks. In the biomedical signal process, the analog to digital converter (ADC) is used to digitalize the obtained biomedical signal. The data would be combined with the carrier from transmitter then be sent out for monitoring. The external RF power is not only applied to the power management but also the injection-lock frequency divider (ILFD) for generating a carrier of the transmitter to combine with data. Then, the data is amplified by the power amplifier (PA) with the on-off keying modulation.
目錄 i
第一章 緒論 1
1.1 簡介 1
1.2 章節簡介 3
第二章 負阻抗轉換器 4
2.1簡介 4
2.2電路原理與架構 5
2.2.1負阻抗轉換器原理 5
2.2.2雙端負阻抗轉換器 10
2.2.3單端負阻抗轉換器 12
2.3 天線介紹 14
2.3.1偶極天線與雙端負阻抗轉換器結合 14
2.3.2 IFA天線與單端負阻抗轉換器結合 17
2.4 模擬結果 18
2.4.1雙端負阻抗轉換器 18
2.4.2單端負阻抗轉換器 24
2.5結論 28
第三章 植入式生醫訊號量測系統 33
3.1簡介 33
3.2電路原理與架構 35
3.2.1射頻轉直流轉換器 35
3.2.2穩壓器 36
3.2.3除頻器 38
3.2.4功率放大器 43
3.2.5連續漸進式類比數位轉換器 45
3.2.6數位控制單元 47
3.2.7偏壓電路 48
3.3 模擬結果 51
3.3.1射頻轉直流轉換器 51
3.3.2穩壓器 52
3.3.3除頻器 53
3.3.4功率放大器 56
3.3.5發射機 58
3.3.6連續漸進式類比數位轉換器 59
3.3.7數位控制單元 60
3.4 量測結果 65
3.4.1量測環境 65
3.4.2射頻轉直流轉換器 68
3.4.3穩壓器 71
3.4.4除頻器 73
3.4.5連續漸進式類比數位轉換器 76
3.4.6生醫植入式監控系統 78
3.5結論 80
第四章 總結與未來展望 82
參考文獻 83
[1]J. T. Aberle, “Two-port representation of an antenna with application to non-Foster matching networks, ” IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1218-1222, May 2008.
[2]C. R. White, J. S. Colburn and R. D. Nagele, “A Non-Foster VHF monopole antenna,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp.584 -587, 2012.
[3]Church, J., Chieh, J.-C.S., Lu Xu, Rockway, J.D., and Arceo, D., “UHF Electrically Small Box Cage Loop Antenna With an Embedded Non-Foster Load,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1329-1332, 2014.
[4]S. E. Sussman-Fort and R. M. Rudish “Non-Foster impedance matching of electrically-small antennas,” IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2230 -2241, 2009.
[5]N. Zhu, and R.W. Ziolkowski “Broad-bandwidth, Electrically Small Antenna Augmented with an Internal Non-Foster Element,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 1116 – 1120, 2012.
[6]M. C. Tang, et al., “Augmenting a Modified Egyptian Axe Dipole Antenna With Non-Foster Elements to Enlarge Its Directivity Bandwidth,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 421-424, 2013.
[7]S. Saadat, M. Adnan, H. Mosallaei and E. Afshari “Composite metamaterial and metasurface integrated with non-foster active circuit elements: A bandwidth-enhancement investigation,” IEEE Trans. Antennas. Propag., vol. 61, no. 3, pp.1210 -1218, 2013.
[8]C. R.White, J.W.May, and J. S. Colburn, “A variable negative-inductance integrated circuit at UHF frequencies,” IEEE Microw. Wireless Compon. Lett., 2012.
[9]H. Mirzaei G. V. Eleftheriades, “A resonant Printed Monopole Antenna With an Embedded Non-Foster Matching Network,” IEEE Trans.Antennas Propag.,vol. 61,no. 11,pp. 5363-5371, Nov.2013.
[10]J. M. C. Covington III, K. L. Smith, J. W. Shehan, V. S. Kshatri, T. P. Weldon, and R. S. Adams, “Measurement of a CMOS Negative Inductor for Wideband Non-Foster Metamaterials, ” SOUTHEASTCON 2014, IEEE, pp.1-4, March 2014.
[11]C. R. White, J. W. May, and J. S. Colburn, “A variable negative-inductance integrated circuit at UHF frequencies,” IEEE Microw. Wireless Compon. Lett., 2012.
[12]V.S. Kshatri, J. M. C. Covington III, J. W. Shehan, T. P. Weldon, and R. S. Adams, "Comparison of CMOS current conveyor circuits for non-Foster applications," in proc. IEEE Southeastcon 2013, pp.1-4, Mar 2013.
[13]J. M. C. Covington III. “A cross-coupled cmos negative capacitor for wideband metamaterial applications,” in proc. IEEE Southeastcon 2014, pp.1-4, 2014.
[14]V.S. Kshatri, J. M. C. Covington III, J. W. Shehan, "Compensation of frequency depedent parasitic resistance in a CMOS linvill negative inductor," in proc. IEEE Southeastcon 2014, pp.13-16,Mar 2013.
[15]B. Mrkovic, M. Aswnbrener, "The simple CMOS negative capacitance with improved frequency response," in proc. IEEE MIPRO, pp.87-90, May 2012.
[16]J. D. Kraus and R. J. Marhefka, Antennas for All Applications, 3rd ed., Mcraw-Hill, New York, 2002.
[17]J. F. Dickson ,"On-chip high-voltage generation in NMOS integrated circuits using an improved voltage multiplier technique", IEEE J. Solid-State Circuits, vol. SSC-11, no. 3, pp.374 -378, 1976.
[18]J. F. Dickson ,"Voltage multiplier employing clock gated transistor chain", patent 4,214,174, 1980.
[19]T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki and S. Otaka ,"A 950-MHz rectifier circuit for sensor network tags with 10-m distance", IEEE J. Solid-State Circuits, vol. 41, no. 1, pp.35 -41, 2006.
[20]T. Le, K. Mayaram and T. Fiez ,"Efficient far-field radio frequency energy harvesting for passively powered sensor networks", IEEE J. Solid-State Circuits, vol. 43, no. 5, pp.1287 -1302, 2008.
[21]H. Lin, K.-H. Chang and S.-C. Wong ,"Novel high positive and negative pumping circuits for low supply voltage", in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 1, pp.238 -241, 1999.
[22]Papotto, G., Carrara F. and Palmisano, G. ,"A 90-nm CMOS Threshold-Compensated RF Energy Harvester", IEEE J. Solid-State Circuits, vol. 46, no. 9, pp.1985 -1997, 2011.
[23]K.Kotani, A.Sasaki and T.Ito ,“High-efficiency differential-drive CMOS rectifier for UHF RFIDs,” IEEE J. Solid-State Circuits, vol.44, no. 11, pp. 3011–3018, 2009.
[24]H.C. Chen, M.Y. Yen, Q.X. Wu, K.J. Chang and L.M. Wang , "Batteryless Transceiver Prototype for Medical Implant in 0.18- μm CMOS Technology", IEEETrans. Microw. Theory Techn., vol. 62, no. 1, 2014.
[25]S. Kim, J. S. Ho, L. Y. Chen and A. S. Y. Poon, “Wireless power transfer to a cardiac implant,” applied physics letters 101, 073701, (2012).
[26]FCC Rules and Regulations, “Medical Device Radio communications Service,” 2009.
[27]B. Razavi, "RF Microelectronics," 2nd Ed., Prentice Hall, 2012.
[28]K. Yamamoto and M. Fujishima, "A 44uW 4.3-GHz injection-locked frequency divider with 2.3-GHz locking range," IEEE J. Solid-State Circuits, vol. 40, no. 3,pp. 671-677, Mar 2005.
[29]B. Razavi, "A study of injection locking and pulling in oscillators", IEEE J. Solid-State Circuits, vol. 39, no. 9, pp.1415 -1424, 2004.
[30]A. Paidimarri, P. M. Nadeau, P. P. Mercier and A. P. Chandrakasan, "A 2.4 GHz Multi-Channel FBAR-based Transmitter With an Integrated Pulse-Shaping Power Amplifier" IEEE J. Solid-State Circuits, vol. 48, no. 4, April 2013.
[31]N. Cho , J. Bae and H. J. Yoo, "A 10.8 mW body channel communication/MICS dual-band transceiver for a unified body sensor network controller", IEEE J. Solid-State Circuits, vol. 40, no. 12, pp.3459 -3468, 2009.
[32]J. H. Liu , C. Li , L. Chen , Y. H. Xiao , J. Y. Wang , H. L. Liao and R. Huang, "An ultra-low power 400 MHz OOK transceiver for medical implanted applications", in Proc. ESSCIRC, pp.175 -178, 2011.
[33]Bohorquez, J.L., Chandrakasan, A.P. and Dawson, J.L,” A 350uW CMOS MSK Transmitter and 400 uW OOK Super-Regenerative Receiver for Medical Implant Communications,” IEEE J. Solid-State Circuit, vol. 44, Issue. 4, pp.1248-1259, 2009.
[34]T. Copani , M. Seungkee , S. Shashidharan , S. Chakraborty , M. Stevens , S. Kiaei and B. Bakkaloglu, "A CMOS low-power transceiver with reconfigurable antenna interface for medical implant applications", IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp.1369 -1378, 2011.
[35]J. Masuch and M. D. Restituto, "A 1.1-mW-RX 81.4-dBm Sensitivity CMOS Transceiver for Bluetooth Low Energy ", IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp.1660 -1673, 2013.
[36]Z. Wang , H. Jiang and H. Chen, "CMOS IC Design for Wireless Medical and Health Care ," Springer, 2014.
[37]J. Yi, W. H. Ki and C. Y. Tsui, “Analysis and Design Strategy of UHF Mircro-Power CMOS Rectifiers for Micro-Sensor and RFID Applications,” IEEE Trans. On Circuits and Systems-I, vol.54, no. 1, Jan 2007.
[38]J. Pandey and B. P. Otis, “A sub-100μW MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication,” IEEE J. Solid-State Circuits, vol. 46, no. 5, May 2011.
[39]呂毓駿,"適用於ECG量測系統之連續漸進式類比數位轉換器設計",國立台灣科技大學電機所碩士論文,2012.
[40]王禮銘, ”應用於LTE之串接式雙迴路頻率合成器,” 國立台灣科技大學電機所碩士論文, 2013.
[41]柯啟育"應用於生醫植入式之低功率發射機",國立台灣科技大學電機所碩士論文,2014.
[42]楊三慶"應用於慢性病監測之植入式生醫訊號量測系統",國立台灣科技大學電機所碩士論文,2015.
[43]鄭紹峻"應用於4G LTE智慧型手機上天線微型化之負阻抗轉換器",國立台灣科技大學電機所碩士論文,2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top