跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林建宇
研究生(外文):Chien-Yu Lin
論文名稱:軟體無線電通道響應器之超高頻小尺度通道量測與建模
論文名稱(外文):UHF Small-Scale Channel Measurement and Modeling Using Software Defined Radio Based Channel Sounder
指導教授:劉馨勤
指導教授(外文):HSIN-CHIN LIU
口試委員:劉馨勤
口試委員(外文):HSIN-CHIN LIU
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:74
中文關鍵詞:通道量測通道建模Tapdelayline小尺度通道衰落
外文關鍵詞:Sliding correlator channel sounderchannel measurementTap delay linesmall scale fading.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近來無線通訊已在各種環境中普遍的使用。為了使這些應用有最佳效能,研究各個環境的傳輸通道是相當重要的。
一般而言,傳輸通道的研究需要大量的量測及數據的統計分析,以獲得周詳的通道狀態資訊,進而利用其量測分析之數據建立一近似的通道模型。
本論文開發一展頻滑動相關器之通道量測器,且使用互相關特性較佳之 Kasami序列做為展頻碼,實現其系統於軟體無線電平台上,用於本論文之通道量測實驗。歸功於軟體無線電技術,其量測系統可以隨意的調整操作頻率及展頻碼等等參數的優點,使得通道的量測能依照各個量測環境特性而進行彈性的修正。
本論文呈現於900MHz UHF 頻段的室內通道量測之研究成果,並針對其量測環境之功率延遲分佈及 RMS 延遲分佈等等通道特性進行分析及討論。
根據量測結果,本論文提出了以 Tap delay line 方法為依據的室內 UHF 小尺度衰落通道模型;本論文也提供了其通道模型的模擬結果與實驗數據的分析比較。
Recently wireless communications have been used pervasively in various environments. To make the best use of these applications, it is important to study the propagation channels corresponding these scenarios.
Generally, it requires massive measurement and analytical statistical data analysis to obtain comprehensive channel state information and to build an approximate channel model.
In this work, we develop a sliding correlator based channel sounder with Kasami sequences over a software defined radio platform, which is used in our channel measurement. Thanks to the software defined radio technology, the channel sounder has advantages of changing operation frequencies and spreading sequences, which is very convenient for channel measurement in various environments.
This thesis presents some measurement results of 900MHz UHF band indoor propagation, and their corresponding channel characteristics including power delay profile and RMS delay spread.
An indoor UHF small scale fading channel model in terms of tap delay line fashion is proposed based on the measurement results. Comparisons of computer simulation results using the channel model and the experimental data are also provided in this thesis.
摘要
ABSTRACT
致謝
目錄
圖目錄
表目錄
第1章 序論
1.1 研究目的與動機
1.2 章節概要
第2章 文獻探討
2.1 小尺度通道衰落模型
2.1.1 多重路徑強度分佈
2.1.2 以時域探討因多重路徑引起的小尺度衰落通道
2.1.3 以頻域探討因多重路徑引起的小尺度衰落通道
2.2 通道量測方法
2.2.1 直接射頻脈波系統(Direct RF Pulse System)
2.2.2 頻域通道量測 (Frequency Domain Channel Sounding)
2.2.3 展頻滑動相關器通道量測(Spread Spectrum Sliding Correlator Channel Sounding)
2.3 通道量測系統概述
2.3.1 展頻碼介紹
2.3.2 多重路徑偵測方法
第3章 通道量測系統與分析方法
3.1 通道量測系統
3.1.1 Kasami code
3.1.2 滑動相關器架構
3.2 通道量測方法
3.3 數據分析建模
3.3.1 數據驗證
3.3.2 利用離散傅立葉轉換之頻譜分析
3.3.3 參數建模(parametric modeling)
3.3.4 功率延遲分佈估測
3.3.5 小尺度衰落通道模型
3.3.6 Tap Delay Line通道建模
第4章 通道量測及分析結果
4.1 量測環境、系統及參數設置
4.2 量測結果
4.2.1 功率延遲分佈分析
4.3 通道量測分析
4.3.1 小尺度衰落通道模型
4.4 TDL分析
第5章 通道建模模擬與驗證
5.1 通道數據分析
5.2 通道建模
5.3 建模通道模擬
5.4 通道驗證
第6章 結論與未來研究方向
參考文獻
[1]B. Sklar, "Rayleigh fading channels in mobile digital communication systems .I. Characterization," IEEE Communications Magazine, vol. 35, pp. 90-100, 1997.
[2]S. Salous, Radio propagation measurement and channel modelling: John Wiley & Sons, 2013.
[3]T. Rappaport, Wireless Communications: Principles and Practice: Prentice Hall PTR, 2001.
[4]R. J. Pirkl, "A sliding correlator channel sounder for ultra-wideband measurements," Master, Electrical and Computer Engineering, Georgia Institute of Technology, 2007.
[5]M. Anderson, G. Borg, and R. Goodwin, "Channel Sounding Measurements at 59.5 MHz Across the Australian Capital Territory," in 2005 Asia-Pacific Conference on Communications, 2005, pp. 705-709.
[6]C.-M. Huang, "基於軟體定義無線電之通道量測: 設計與實現," 成功大學電腦與通信工程研究所學位論文, pp. 1-33, 2015.
[7]D. Cassioli, M. Z. Win, and A. F. Molisch, "The ultra-wide bandwidth indoor channel: from statistical model to simulations," IEEE Journal on selected areas in Communications, vol. 20, pp. 1247-1257, 2002.
[8]R. J. Pirkl and G. D. Durgin, "Optimal Sliding Correlator Channel Sounder Design," IEEE Transactions on Wireless Communications, vol. 7, pp. 3488-3497, 2008.
[9]T. S. Rappaport, S. Y. Seidel, and K. Takamizawa, "Statistical channel impulse response models for factory and open plan building radio communicate system design," IEEE Transactions on Communications, vol. 39, pp. 794-807, 1991.
[10]H. T. William, P. T. Desmond, E. Z. Rodger, F. M. Nicholas, and W. M. Jon, "A Statistical Model for Indoor Multipath Propagation," in The Best of the Best:Fifty Years of Communications and Networking Research, ed, 2007, pp. 127-136.
[11]M. Patzold, A. Szczepanski, and N. Youssef, "Methods for modeling of specified and measured multipath power-delay profiles," IEEE Transactions on Vehicular Technology, vol. 51, pp. 978-988, 2002.
[12]S. Kalyanaraman. Point-to-Point Wireless Communication. Available: http://slideplayer.com/slide/5241587/
[13]L. Novosel and G. Šišul, "Comparison of pseudo noise sequence lengths for a correlator channel sounder," in Proceedings ELMAR-2014, 2014, pp. 1-4.
[14]M. A. Stephens, "EDF statistics for goodness of fit and some comparisons," Journal of the American statistical Association, vol. 69, pp. 730-737, 1974.
[15]R. Steele and L. Hanzo, Mobile Radio Communications: Second and Third Generation Cellular and WATM Systems: 2nd: IEEE Press-John Wiley, 1999.
[16]R. Steele and L. Hanzo, "Characterisation of Mobile Radio Channels," in Mobile Radio Communications, ed: Wiley-IEEE Press, 1999, pp. 91-185.
[17]R. Jain. (2007). Channel Models : A Tutorial (1 ed.). Available: https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjdqPj11fLNAhVItJQKHeF8Bg0QFgghMAA&url=https%3A%2F%2Fwww.researchgate.net%2Ffile.PostFileLoader.html%3Fid%3D56bb4de964e9b2f33e8b45b0%26assetKey%3DAS%253A327593363558400%25401455115752451&usg=AFQjCNF-nGnr1WpcVHJg0sjtruuSqu8w7w&sig2=80AsDz2-ffSEQ_XUewCy2Q
[18]J. Karedal, A. J. Johansson, F. Tufvesson, and A. F. Molisch, "A Measurement-Based Fading Model for Wireless Personal Area Networks," Wireless Communications, IEEE Transactions on, vol. 7, pp. 4575-4585, 2008.
[19]J. B. Andersen, T. S. Rappaport, and S. Yoshida, "Propagation measurements and models for wireless communications channels," Communications Magazine, IEEE, vol. 33, pp. 42-49, 1995.
[20]F. J. Massey Jr, "The Kolmogorov-Smirnov test for goodness of fit," Journal of the American statistical Association, vol. 46, pp. 68-78, 1951.
[21]P. Bello, "Characterization of Randomly Time-Variant Linear Channels," Communications Systems, IEEE Transactions on, vol. 11, pp. 360-393, 1963.
[22]Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM wireless communications with MATLAB: John Wiley & Sons, 2010.
[23]D. C. Cox and R. Leck, "Distributions of multipath delay spread and average excess delay for 910-MHz urban mobile radio paths," Antennas and Propagation, IEEE Transactions on, vol. 23, pp. 206-213, 1975.
[24]D. Devasirvatham, "Time delay spread and signal level measurements of 850 MHz radio waves in building environments," IEEE Transactions on Antennas and Propagation, vol. 34, pp. 1300-1305, 1986.
[25]Z. Di, W. Hongqing, J. Xiang, X. Chengwen, F. Zesong, and W. Hualei, "A new ultra-wideband high-frequency channel model," in Signal and Information Processing (ChinaSIP), 2015 IEEE China Summit and International Conference on, 2015, pp. 923-927.
[26]D. Greenwood and L. Hanzo, "Characterisation of mobile radio channels: 2nd," 1999.
[27]M. Hata, "Empirical formula for propagation loss in land mobile radio services," IEEE transactions on Vehicular Technology, vol. 29, pp. 317-325, 1980.
[28]P. Hoeher and E. Haas, "Aeronautical channel modeling at VHF-band," in Vehicular Technology Conference, 1999. VTC 1999 - Fall. IEEE VTS 50th, 1999, pp. 1961-1966 vol.4.
[29]J. A. Pugh, R. J. Bultitude, and P. J. Vigneron, "Propagation measurements and modelling for multiband communications on tactical VHF channels," presented at the MILCOM 2007-IEEE Military Communications Conference, 2007.
[30]S. Y. Seidel, T. S. Rappaport, S. Jain, M. L. Lord, and R. Singh, "Path loss, scattering and multipath delay statistics in four European cities for digital cellular and microcellular radiotelephone," Vehicular Technology, IEEE Transactions on, vol. 40, pp. 721-730, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top