|
[1] S. M. Behrens, R. Unal, E. Hekman, R. Carloni, S. Stramigioli and H. Koopman, "Design of a Fully-Passive Transfemoral Prosthesis Prototype," 33rd Annual International Conference of the IEEE EMBS, pp. 591-594, August-September 2011. [2] H. Huang, T. A. Kuiken and R. D. Lipschutz, "A Strategy for Identifying Locomotion Modes Using Surface Electromyography," IEEE Transactions on Biomedical Engineering, vol. 56, no. 1, pp. 65-73, January 2009. [3] A. L. Delis, A. F. da Rocha, I. dos Santos, I. G. Sene Jr, S. Salomoni and G. A. Borges, "Development of a Microcontrolled Bioinstrumentation System for Active Control of Leg Prostheses," Annual International IEEE EMBS Conference, pp. 2393-2396, August 2008. [4] E. C. Martinez-Villalpando and H. Herr, "Agonist-antagonist active knee prosthesis: A preliminary study in level-ground walking," Journal of Rehabilitation Research & Development, vol. 46, no. 3, pp. 361-374, 2009. [5] E. C. Martinez-Villalpando, J. Weber, G. Elliott and H. Herr, "Design of and Agonist-Antagonist Active Knee Prosthesis," Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 529-534, October 2008. [6] R. Unal, F. Klijnstra, B. Burkink, S. Behrens, E. Hekman, S. Stramigioli, H. Koopman and R. Carloni, "Modeling of WalkMECH: a Fully-Passive Energy-Efficient Transfemoral Prosthesis Prototype," IEEE International Conference on Rehabilitation Robotics, June 2013. [7] S. K. Au, J. Weber and H. Herr, "Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy," IEEE Transactions on Robotics, vol. 25, no. 1, pp. 51-66, February 2009. [8] R. D. Gregg, T. Lenzi, L. J. Hargrove and J. W. Sensinger, "Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments With Transfemoral Amputees," IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1455-1471, December 2014. [9] E. J. Rouse, L. M. Mooney and H. M. Herr, "Clutchable series-elastic actuator: Implications for prosthetic knee design," The International Journal of Robotics Research, 9 October 2014. [10] B. E. Lawson, B. Ruhe, A. Shultz and M. Goldfarb, "A Powered Prosthetic Intervention for Bilateral Transfemoral Amputees," IEEE Transactions on Biomedical Engineering, vol. 62, no. 4, pp. 1042-1050, April 2015. [11] J. Markowitz, P. Krishnaswamy, M. F. Eilenberg, K. Endo, C. Barnhart and H. Herr, "Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model," Philosophical Transactions of The Royal Society B, vol. 366, pp. 1621-1631, 2011. [12] T. Lenzi, L. J. Hargrove and J. W. Sensinger, "Preliminary Evaluation of a New Control Approach to Achieve Speed Adaption in Robotic Transfemoral Prostheses," in International Conference on Intelligent Robots and System (IROS 2014), Chicago, IL, USA, 2014. [13] F. Wang, K. Kim, S. Wen, Y. Wang and C. Wu, "Study of Gait Symmetry Quantification and Its Application to Intelligent Prosthetic Leg Development," Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, pp. 1361-1366, December 2011. [14] m. m. ag, Maxon Motor, 2016. [Online]. Available: http://www.maxonmotor.com/maxon/view/category/motor?target=filter&filterCategory=ec4pole. [Accessed 28 June 2016]. [15] m. m. ag, Maxon Motor, 2016. [Online]. Available: http://www.maxonmotor.com/maxon/view/product/gear/planetary/gp32/416930. [Accessed 3 July 2016]. [16] m. m. ag, Maxon Motor, 2016. [Online]. Available: http://www.maxonmotor.com/maxon/view/category/motor?target=filter&filterCategory=ec4pole. [Accessed 28 June 2016]. [17] Fahmizal, Development of a Sensor-Based Biped Robot Locomotion Controller for Uneven Terrain, Taipei: National Taiwan University of Science and Technology, 2013. [18] C. L. Vaughan, L. B. Davis and C. J. O'Connor, Dynamics of Human Gait (2nd Edition), C. L. Vaughan, Ed., Western Cape: Kiboho Publisher, 1992. [19] K. J. Waldron and G. L. Kinzel, Kinematics, dynamics, and design of machinery, United States of America: John Wiley & Sons, Inc, 2003. [20] J. W. Sensinger, N. Intawachirarat and S. A. Gard, "Contribution of Prosthetic Knee and Ankle Mechanisms to Swing-Phase Foot Clearance," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 1, pp. 74-80, January 2013.
|