跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏大喬
研究生(外文):Ta-Chiao Yen
論文名稱:熱塑性微流道晶片平坦度對於晶片結合之影響
論文名稱(外文):The Influence of Flatness to The Bonding of Thermoplastic Microfluidic Chips
指導教授:陳品銓
指導教授(外文):Pin-Chuan Chen
口試委員:陳品銓
口試委員(外文):Pin-Chuan Chen
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:121
中文關鍵詞:微流道晶片的翹曲晶片結合熱壓成型
外文關鍵詞:Warpage of thermoplastic substratesBonding of thermoplastic microfluidicsSolvent bonding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
熱壓成型廣泛運用於拋棄式微流體晶片的製作中,過程中因為加工溫差的變化導致熱塑性基材翹曲的疑慮,此翹曲行為對於晶片後續結合的品質影響相當大,因此本研究運用熱壓成型實驗與平面度誤差的計算,來觀察晶片翹曲所造成的平面度誤差對於實際晶片結合品質的影響。過程中,我們設計及製造了五種不同的四吋模具,每一個模具上皆有不同的微結構,會影響壓克力材料在熱壓後有不同的翹曲,進而利用這些不同平面度誤差的晶片進行實驗來了解翹曲對於晶片結合的影響。為了量化晶片結合的品質,將結合後的晶片進行洩漏測試(leakage Test)與結合強度壓力測試(Burst Pressure Test)。實驗結果顯示,平面度誤差(平均14.5μm,標準差4.3μm)較小的晶片可以有較強的結合強度(7.58 bars);而平面度誤差較高的晶片(平均18.3μm ,標準差3.7μm) 及 (平均23.2μm,標準差4.8μm)僅能承受2至3 bars,且結合成功率較低。因此,從實驗結果可以歸納出晶片的翹曲行為是影響結合品質的關鍵因素,且會影響後續晶片的結合品質與強度。
Warpage is a common problem in the injection molding, rolling printing, and hot embossing of thermoplastic microfluidic chips. Warpage can greatly reduce bond quality and can even lead to chip failure. This study adopted an experimental methodology to investigate the influence of warpage on bonding quality. We created thermoplastic microfluidic chips with different degrees of warpage, by using a micromilling machine to fabricate five 4 inches brass mold inserts with various micro features. The micro features were used to vary the embossing pressure and thereby induce warpage of various degrees. The warped microfluidic chips, (25mm in width and 35mm in length, ) were bonded to pristine PMMA substrates using solvent. The bonded chips were subjected to leakage tests and burst pressure tests in order to characterize bond quality. Our experiment results clearly showed that chips with smaller warpage, (14.5μm with a STD of 4.3μm), could withstand burst pressure of 7.58 bars with 100% bonding success. The chips with larger warpage, (18.3μm with a STD of 3.7μm) and (23.2μm with a STD of 4.8μm, ) were able to withstand burst pressure of only 2 to 3 bars and presented a only 33% likelihood of forming a successful bond. In this study, warpage was shown to be a crucial factor in bonding quality, and wherein a pronounced warpage deteriorated bonding strength and reduced the likelihood of bonding successfully to the substrate to form thermoplastic microfluidic chips.
摘要 I
Absract III
致謝 V
目錄 VII
圖目錄 X
表目錄 XIV
第一章、導論 1
1.1研究背景 1
1.2研究動機與目的 5
1.3研究方法 6
1.4論文架構 8
第二章、文獻探討 10
2.1熱壓成型介紹與參數影響 10
2.2脫模行為分析與外圍結構相關文獻 15
2.3有機溶液結合方法(Solvent Bonding)相關文獻 20
第三章、晶片製程介紹與設計 22
3.1晶片製程介紹 22
3.2 塑膠材料選用 23
3.3主結構模具種類與製造 25
3.3.1微銑削製程介紹 25
3.3.2微銑削機操作方式 26
3.3.3模具設計與製程 28
3.3.4六吋複數結構模具製程 38
3.4熱壓成型製程 40
3.4.1 熱壓成型機使用方式 40
3.4.2 熱壓成型階段介紹 41
3.4.3熱壓成型製程參數介紹 43
3.5化學溶液結合製程 45
第四章、實驗設備與方法 47
4.1實驗設備 47
4.1.1製程設備與軟體 47
4.1.2量測設備與軟體 52
4.1.3實驗設備與軟體 54
4.2 實驗方法 61
4.2.1平面度誤差量測理論─最小平方法 61
4.2.2平面度測試 63
4.2.3檢體洩漏測試與晶片結合壓力測試 66
第五章、實驗結果與討論 69
5.1熱壓成型結構完整度觀察結果 69
5.2熱壓成型晶片平面度測試結果 72
5.3 晶片洩漏測試實驗結果 76
5.4 微流道晶片結合強度測試實驗結果 79
5.5六吋模具晶片實驗結果探討 81
5.6 實驗結果討論 84
第六章、結論與建議 86
6.1 結論 86
6.2建議與未來展望 88
參考文獻 90
附錄A.四吋模具平面度誤差數值與壓力曲線 94
附錄B.熱壓成型微透鏡應用(SEM拍攝) 103
[1]黃楓台.21 世紀科技趨勢報告: 奈米與微機電. 行政院國家科學委員會科學技術資料中心, 2002.

[2]Hsu, Tai-Ran. MEMS and microsystems: design, manufacture, and nanoscale engineering. John Wiley & Sons, 2008.

[3]Heckele, M. and W. K. Schomburg (2004). "Review on micro molding of thermoplastic polymers." Journal of Micromechanics and Microengineering 14(3): R1-R14

[4]Chen, Pin-Chuan, et al. "An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate." The International Journal of Advanced Manufacturing Technology 71.9-12 (2014): 1623-1630.

[5]Chen, Pin-Chuan, et al. "Optimization of micromilling microchannels on a polycarbonate substrate." International journal of precision engineering and manufacturing 15.1 (2014): 149-154.

[6]Kricka, Larry J., et al. "Fabrication of plastic microchips by hot embossing."Lab on a Chip 2.1 (2002): 1-4.

[7]Lee, Gwo-Bin, et al. "Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection." Sensors and Actuators B: Chemical 75.1 (2001): 142-148.

[8]Dang, Fuquan, et al. "High-performance genetic analysis on microfabricated capillary array electrophoresis plastic chips fabricated by injection molding."Analytical chemistry 77.7 (2005): 2140-2146.

[9]Ng, S. H., and Z. F. Wang. "Hot roller embossing for microfluidics: process and challenges." Microsystem technologies 15.8 (2009): 1149-1156.

[10]Worgull, Matthias, and Mathias Heckele. "New aspects of simulation in hot embossing." Microsystem Technologies 10.5 (2004): 432-437.

[11]Heckele, M., W. Bacher, and K. D. Müller. "Hot embossing-the molding technique for plastic microstructures." Microsystem technologies 4.3 (1998): 122-124.

[12]Becker, Holger, and Ulf Heim. "Hot embossing as a method for the fabrication of polymer high aspect ratio structures." Sensors and Actuators A: Physical83.1 (2000): 130-135. 7

[13]Heyderman, L. J., et al. "Flow behaviour of thin polymer films used for hot embossing lithography." Microelectronic Engineering 54.3 (2000): 229-245.

[14]Rowland, Harry D., and William P. King. "Polymer deformation and filling modes during microembossing." Journal of Micromechanics and Microengineering 14.12 (2004): 1625.

[15]Lan, Shuhuai, et al. "A parameter study on the micro hot-embossing process of glassy polymer for pattern replication." Microelectronic Engineering 86.12 (2009): 2369-2374.

[16]Marson, Silvia, et al. "Flatness optimization of micro-injection moulded parts: the case of a PMMA microfluidic component." Journal of Micromechanics and Microengineering 21.11 (2011): 115024.

[17]Liqun, D. U., et al. "The effect of injection molding PMMA microfluidic chips thickness uniformity on the thermal bonding ratio of chips." Microsystem technologies 18.6 (2012): 815-822.

[18]Cheng, G., et al. "Process parameter effects on dimensional accuracy of a hot embossing process for polymer-based micro-fluidic device manufacturing." The International Journal of Advanced Manufacturing Technology 75.1-4 (2014): 225-235.

[19]Worgull, M., M. Heckele, and W. K. Schomburg. "Large-scale hot embossing."Microsystem technologies 12.1-2 (2005): 110-115.
[20]Guo, Yuhua, et al. "Study of the demolding process—implications for thermal stress, adhesion and friction control." Journal of Micromechanics and Microengineering 17.1 (2006): 9.

[21]He, Yong, Jian-Zhong Fu, and Zi-Chen Chen. "Research on optimization of the hot embossing process." Journal of Micromechanics and Microengineering17.12 (2007): 2420.

[22]Song, Zhichao, et al. "Simulation study on stress and deformation of polymeric patterns during the demolding process in thermal imprint lithography." Journal of Vacuum Science & Technology B 26.2 (2008): 598-605.

[23]Dirckx, Matthew E. Demolding of hot embossed polymer microstructures. Diss. Massachusetts Institute of Technology, 2010.

[24]J. H. H. a. R. L. Scott., Chemistry and biochemistry, 1951

[25]Klank, Henning, Jörg P. Kutter, and Oliver Geschke. "CO 2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems." Lab on a Chip 2.4 (2002): 242-246.

[26]Hsu, Yi-Chu, and Tang-Yuan Chen. "Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices."Biomedical microdevices 9.4 (2007): 513-522.

[27]Mair, Dieudonne A., et al. "Room-temperature bonding for plastic high-pressure microfluidic chips." Analytical chemistry 79.13 (2007): 5097-5102.

[28]Hoogenboom, Richard, et al. "Solubility and thermoresponsiveness of PMMA in alcohol-water solvent mixtures." Australian journal of chemistry 63.8 (2010): 1173-1178.

[29]Lei, Kin Fong, Wen J. Li, and Yeung Yam. "Effects of contact-stress on hot-embossed PMMA microchannel wall profile." Microsystem technologies 11.4-5 (2005): 353-357.
[30]https://zh.wikipedia.org/wiki/%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98 E6%B3%95最小平方法
[31]Huang, S. T., K. C. Fan, and John H. Wu. "A new minimum zone method for evaluating flatness errors." Precision Engineering 15.1 (1993): 25-32.

[32]Scarr, A. J. "Use of the Least Squares Line and Plane in the Measurement of Straightness and Flatness." Proceedings of the Institution of Mechanical Engineers 182.1 (1967): 531-536.

[33]Chen, Yu-Fen, Chien-Hung Liu, and Te-Hua Fang. "DEVELOPMENT OF A LASER MEASUREMENT SYSTEM FOR FLATNESS AND THICKNESS OF THE RUBBER AND RACKET." TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING 37.3 (2013): 539-547.
[34]影像處理輔助扇形雷射光束掃描量測系統之研究. 2005.

[35]黃立政, 流體力學原理與應用. 台北市: 全華科技圖書股份有限公司, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top