跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 23:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡承澤
研究生(外文):CHENG-TSE TSAI
論文名稱:基於時頻分析之超音波刀具可靠度評估
論文名稱(外文):Evaluation of the Ultrasonic Cutting Tools Reliability by Time-Frequency Analysis
指導教授:劉孟昆
指導教授(外文):LIU,MENG-KUN
口試委員:劉孟昆
口試委員(外文):LIU,MENG-KUN
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:102
中文關鍵詞:超音波切割刀時頻分析法訊號處理希爾伯特-黃轉換支持向量機
外文關鍵詞:Ultrasonic machiningTime-Frequency AnalysisHoneycomb- structureSignal processingHilbert-Huang Transform
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
「超音波刀具(Ultrasonic Cutting Tools)」全名為「蜂巢狀複合材料超音波輔助切割刀具」,是為航太領域中專門切割蜂巢結構(Honeycomb Structure)所研發之工具。此種刀具主要由碳化鎢所組成且價格昂貴,其加工方式為將刀具藉由螺紋鎖緊於超音波變幅桿末端,利用高頻超音波振動切割紙蜂巢結構。一般將超音波主軸安裝在CNC工具機上以加工複雜曲面。然而超音波刀具的可靠度參差不齊,造成換刀時機不易預測,常有刀具尚可切削卻遭淘汰,造成經濟效益低落。
本研究透過高靈敏度麥克風,擷取超音波刀具在無負載時所發出的音壓訊號,藉希爾伯特-黃轉換(Hilbert-Huang Transform)找出刀具之瞬時頻率,進而診斷超音波刀具潛在之可靠度。其中音壓擷取實驗使用自行設計之變幅桿(horn)作為量測的基準,藉由ANSYS的模態分析(Modal Analysis)與簡諧響應分析(Harmonic Response Analysis)做為其前導設計。利用希爾伯特邊際頻譜可擷取特徵找出其特徵參數,並使用支持向量機(Support Vector Machine, SVM)之機器監督式學習技術做為分類器,可判斷刀具的可靠度,除了可以當作交貨時的驗刀機制之外,並可預測刀具的使用期限,達到降低成本之目的。
Ultrasonic cutting tool is specifically used in the manufacturing of honeycomb structure in aerospace engineering. This tool made of expensive tungsten carbine is locked at the end of ultrasonic horn by screw thread, and it generates high frequency ultrasonic vibrations to cut the honeycomb structure. In general, the ultrasonic spindle is mounted on the CNC machine to work on complex surface structure. However, the reliability of the ultrasonic tool is unsteady and its life cycle is unpredictable. It renders low economic efficiency when an eligible tool is replaced in advance to prevent premature failure.
In this research, a high sensitive microphone is used to capture the sound pressure generated by the ultrasonic cutting tool without loading. The time-frequency spectrum generated by Hilbert-Huang transform (HHT) is applied to evaluate the potential reliability of the tool. To conduct the experiment, a customized horn is designed by using modal analysis and harmonic response analysis in ANSYS. The vibration features can be captured by marginal spectrum, and it uses support vector machine (SVM), a supervised learning algorithm, as the classifier to identify the reliability of the tool. The proposed mechanism not only predicts the reliably of the cutting tool, but also can be used as an evaluation standard for the new purchase. Hence the manufacturing cost can be reduced.
摘要 I
ABSTRACT II
致謝 III
表索引 VIII
圖索引 IX
第一章 緒論 1
1.1 研究背景、動機與目的 1
1.2 文獻回顧 5
1.2.1 超音波加工 5
1.2.2 變幅桿之設計原則 6
1.2.3 時頻分析法 7
1.2.4 支持向量機 8
1.3 論文架構 9
第二章 理論基礎 11
2.1 超音波原理與特性 11
2.1.1 波的種類與特性 11
2.1.2 超音波加工 12
2.1.3 超音波加工之基本參數 13
2.1.4 刀具材料與工件材料 14
2.2 訊號處理 15
2.2.1 取樣理論 15
2.2.2 傅立葉分析 17
2.2.3 希爾伯特-黃轉換(Hilbert-Huang transform, HHT) 19
2.3 統計學理論 23
2.3.1 機率質量函數 23
2.3.2 峰度 23
2.3.3 偏度 24
第三章 超音波變幅桿之設計 25
3.1 超音波刀具振動系統 25
3.2 超音波刀具控制變因 27
3.3 有限元素分析設計 30
3.3.1 變幅桿之有限元素模型 30
3.3.2 材料性質設定 36
3.3.3 邊界條件設定 36
3.3.4 網格形式 37
3.3.5 動力分析 39
3.4 超音波系統數值計算結果 41
3.4.1 數值計算結果 41
3.4.2 驗證振幅 44
3.5 實驗設備 46
3.5.1 硬體設備 46
3.5.2 軟體設備 47
第四章 超音波刀具聲壓擷取實驗 48
4.1 實驗方法 48
4.2 資料分析與量化 50
4.3 時域分析結果 52
4.4 頻域分析結果 60
4.5 時頻分析結果 65
4.6 敘述統計量與刀具可靠度之探討 71
4.6.1 特徵擷取 71
4.6.2 刀具特徵與可靠度之探討 72
第五章 支持向量機之應用與探討 74
5.1 支持向量機原理 74
5.1.1 超平面與二次規劃之問題與推導 75
5.1.2 多類別支持向量機 82
5.2 SVM之模型正確率評估 85
5.3 基於SVM之刀具可靠度分析 86
5.4 SVM分類準確率評估 87
5.4.1 SVM分析方法 87
5.4.2 逕向基核函數 90
5.4.3 線性核函數 91
第六章 結果與討論 92
6.1 結論 92
6.2 未來研究方向 97
參考文獻 98
附錄 102
[1]Wood, Robert Williams; Loomis, Alfred L. xxxviii. the physical and biological effects of high-frequency sound-waves of great intensity. the london, edinburgh, and dublin philosophical magazine and journal of science, 1927.
[2]Balamuth, Lewis. ultrasonic surgical methods. u.s. patent no 3,862,630, 1975.
[3]Dam, Henrik; Quist, Per; Schreiber, Mads Peter. productivity, surface quality and tolerances in ultrasonic machining of ceramics. journal of materials processing technology, 1995.
[4]Thoe, T. B.; Aspinwall, D. K.; Wise, M.L.H. review on ultrasonic machining. international journal of machine tools and manufacture, 1998.
[5]Kang, Feng. a difference formulation based on the variational principle. appl. mathematics and comp. mathematics, 1965, 2.4: 238-262.
[6]Seah, K. H. W.; Wong, Y. S.; Lee, L. C. design of tool holders for ultrasonic machining using fem. journal of materials processing technology, 1993.
[7]Amin, S. G.; Ahmed, M. H. M.; Youssef, H. A. computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis. journal of materials processing technology, 1995.
[8]Abdullah, Amir; Pak, Abbas. correct prediction of the vibration behavior of a high power ultrasonic transducer by fem simulation. the international journal of advanced manufacturing technology, 2008.

[9]Kuo, Kei-Lin,. ultrasonic vibrating system design and tool analysis. transactions of nonferrous metals society of china, 2009, 19: s225-s231.
[10]Naď, Milan. ultrasonic horn design for ultrasonic machining technologies.applied and computational mechanics, 2010.
[11]喻?, et al. ANSYS 辅助楔形超声波聚能器的优化设计和实验研究. 声学技术, 2010.
[12]Choi, Young-Jae, et al. effect of ultrasonic vibration in grinding; horn design and experiment. international journal of precision engineering and manufacturing, 2013.
[13]吴欣, et al. 蜂窝复合材料超声辅助切割工具设计. 中国机械工程, 2015.
[14]Che,Jiangtao, et al. experimental study on horizontal ultrasonic electrical discharge machining. journal of materials processing technology, 2016.
[15]Cooley, James W.; Tukey,John W. an algorithm for the machine calculation of complex fourier series. mathematics of computation, 1965.
[16]Welch, Peter D. the use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. ieee transactions on audio and electroacoustics, 1967.
[17]Lei, Yaguo; He, Zhengjia; Zi, Yanyang. application of the eemd method to rotor fault diagnosis of rotating machinery. mechanical systems and signal processing, 2009.
[18]Akiniwa, Yoshiaki; Tanaka, Keisuke; Nakatsu, Akira. evaluation of fatigue strength in very-long life regime of sncm439 steels. nippon kikai gakkai ronbunshu, a hen/transactions of the japan society of mechanical engineers, part a, 2004.
[19]林高田,超音波變幅桿設計於脂溶性成分萃取之研究,台灣科技大學碩士論文.2015.
[20]Daubechies, ingrid. the wavelet transform, time-frequency localization and signal analysis. information theory, ieee transactions on, 1990.
[21]Huang, Norden E., et al. the empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. in: proceedings of the royal society of london a: mathematical, physical and engineering sciences. the royal society, 1998.
[22]Malakooti, Behnam; Wang, Jun; Tandler, Evan C. a sensor-based accelerated approach for multi-attribute machinability and tool life evaluation. the international journal of production research, 1990.
[23]Rawson, F. F., High power ultrasonic resonant horns, part 1 – basic design concepts. velocity of ultrasound at 20 khz; effects of material and horn dimensions, ultrasonics int. 87 conf. proc., london, 1987.
[24]Cortes, Corinna; Vapnik, Vladimir. support-vector networks. machine learning, 1995.
[25]Cottle, Richard W. William Karush and the kkt theorem. doc. math., extra volume: optimization stories, 2012,
[26]Vapnik, Vladimir. the nature of statistical learning theory. springer science & business media, 2013.
[27]Boser, B. E.; Guyon, I. M.; Vapnik, V. N. (1992). "a training algorithm for optimal margin classifiers". proceedings of the fifth annual workshop on computational learning theory – colt '92.
[28]Jack, L. B.; Nandi, A. K. fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. mechanical systems and signal processing, 2002.
[29]Samanta, B.; al-balushi, K. R.; al-araimi, S. A. artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. engineering applications of artificial intelligence, 2003,
[30]Konar, P.; Chattopadhyay, P. bearing fault detection of induction motor using wavelet and support vector machines (svms). applied soft computing, 2011.
[31]Wu, Tian Yau; Chen, J. C.; Wang, C. C. characterization of gear faults in variable rotating speed using hilbert-huang transform and instantaneous dimensionless frequency normalization. mechanical systems and signal processing, 2012.
[32]Wang, Y. S., et al. an intelligent approach for engine fault diagnosis based on hilbert–huang transform and support vector machine. applied acoustics, 2014.
[33]Chang, Chih-Chung; Lin, Chih-Jen. libsvm: a library for support vector machines. acm transactions on intelligent systems and technology (tist), 2011.
[34]Huang, Norden eh. hilbert-huang transform and its applications. world scientific, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊