跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 19:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張國柏
研究生(外文):Guo-Bo Zhang
論文名稱:以反轉式奈米轉印與雷射刻劃製作線性光學尺
論文名稱(外文):Fabrication of Linear Scales with Reversal Nanoimprint and Laser Cutting
指導教授:張復瑜
指導教授(外文):Fuh-Yu Chang
口試委員:張復瑜
口試委員(外文):Fuh-Yu Chang
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:104
中文關鍵詞:奈米轉印光纖雷射光學尺
外文關鍵詞:nanoimprintfiber laserlinear scale
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
光學尺可分為穿透型與反射型兩種型式。編碼器使用發光二極體(LED)作為光源,並使用光偵測器收集訊號,將刻有光柵的線性光學尺置於LED與偵測器之間,當線性光學尺移動時,偵測器可以讀到光強訊號,輸出弦波或方波的電子訊號。
本研究以兩種不同方向開發製作週期為20μm反射式線性光學尺之技術,第一個方向是以反轉式奈米轉印技術,搭配PDMS模具以施加壓力81MPa、光阻填充模穴時間4分鐘及UV曝光時間15分鐘,進行轉印光柵結構至SK5鋼帶以製作反射式光學尺。研究並探討不同施壓壓力大小對光柵結構轉寫率之影響,及SK5鋼帶有無表面處理對於反射率及干涉光點效果之影響。第二個方向是以光纖雷射刻劃的方式在SKD11鋼片上刻劃出具有光柵結構的反射式之光學尺,並研討SKD11鋼片有無表面處理對於反射率及干涉光點效果的影響。研究結果指出最佳的光纖雷射刻劃反射式光學尺之參數為20W功率、1.5μs脈衝寬度、110kHz頻率及30mm/s進給速度。最後,本研究提出一快速雷射刻劃反射式光學尺之方法並進行初步測試。
There are two typical types of linear scale: transmissive type and reflective type. An optical encoder uses a light emitting diode (LED) as the light source and an optical sensor as the detector. A linear scale with grating structures is installed between the LED and the optical detector. The optical detector receives light intensity signal and output sin wave or square wave electric signal when the linear scale moves.
The study includes two directions to develop process for 20μm pitch reflective linear scales. The first direction is to apply reversal nanoimprint on imprinting grating structures on SK5 strips to fabricate reflective linear scales with PDMS molds and operating parameters 81MPa pressure, imprinting time 4 minutes and UV exposure time 15minutes. This work also studied the effect of imprinting pressure on the transfer rate of fabricated structures and the effect of SK5 strip surface quality on the interference pattern. The second direction is to use fiber laser to generate grating structures on SKD11 reflective linear scales. The effect of SKD11 strip surface treatment on the interference pattern was also done in this study. According to the experimental results, the best fiber laser cutting parameters are laser power 20W, pulse width 1.5μs, pulse frequency 110 kHz and feed rate 30mm/s. Finally, a new method to achieve high efficiency of reflective linear scale manufacturing was proposed and tested in this work.
摘要
Abstract
誌謝
目錄
圖目錄
表目錄
第一章、緒論
1.1 前言
1.2 研究背景
1.2.1 光學尺介紹與量測原理
1.2.2 莫爾條紋(Moiré patterns)
1.2.3 泰伯效應(Talbot effect)
1.3 研究動機及目的
第二章、文獻回顧
2.1 熱壓奈米轉印成型技術
2.2 UV奈米轉印成型技術
2.3 雷射加工原理及技術
2.4 光學尺之製造
第三章、實驗背景與設備
3.1 實驗背景
3.1.1 PDMS材料簡介
3.1.2 UV壓印與基材介紹
3.1.3 SKD11模具鋼片
3.2 實驗設備
3.2.1 複合功能轉印設備
3.2.2 真空熱壓機
3.2.3 精密平面磨床(ESG-818)
3.2.4 光纖雷射設備
3.3 量測儀器
3.3.1 掃描式電子顯微鏡
3.3.2 光學顯微鏡
3.3.3 雷射共軛焦顯微鏡
3.3.4 表面粗度儀(Hommel-Tester T400)
第四章、實驗規劃
4.1 實驗目的
4.1.1 反轉式UV奈米轉印
4.1.2 光纖雷射刻劃光柵
4.2 PDMS韌性模具製備
4.2.1 矽母模製作
4.2.2 PC熱壓轉印
4.2.3 PDMS翻模
4.2.4 塗佈光阻
4.3 反轉式UV奈米轉印製程
4.4 光纖雷射刻劃光柵製程
第五章、實驗結果與討論
5.1 PDMS軟模具製作結果與討論
5.1.1 矽母模製作之結果與討論
5.1.2 PC模片製作之結果與討論
5.1.3 PDMS軟模製作之結果與討論
5.2 反轉式UV奈米轉印
5.2.1 施加壓力對結構轉寫率之影響
5.2.2 SK5鋼帶之表面粗糙度與干涉光點探討
5.3 光纖雷射刻劃光柵
5.3.1 光纖雷射刻劃SKD11鋼片表面形貌及干涉光點探討
5.3.2 快速雷射刻劃光柵之加工方法
第六章、結論與未來展望
6.1 結論
6.1.1 結論-反轉式UV奈米轉印
6.1.2 結論-光纖雷射刻劃光柵
6.2 未來展望
6.2.1 未來展望-反轉式UV奈米轉印
6.2.2 未來展望-光纖雷射刻劃光柵
參考文獻
[1].高偉嘉,”以直接轉印技術製作線性光學尺(Fabrication of Linear Optical Scales by Direct Imprint)”,國立台灣科技大學,2015.
[2].E. Gabrielyan, 2007. 'The basics of line moiré patterns and optical speedup', arXiv preprint physics/0703098.
[3].陳耀瑋,“利用泰伯效應之繞射光柵式光學尺之研究(The study of optical encoder using phase grating based on Talbot effect)”,明道大學, 2010.
[4].TAKEDA PACIFIC, (2002, May). Nanotechnology and MEMS: Commercializing Ultra-Small Objects - Market, Opportunities and Technologies, Fremont, California,etrieved July 5,2016 from the World Wide Web: http://www.takpac.com/TPR3137-%20Nano.htm
[5].S. Y. Chou, R. K. Peter, and J. R. Preston, 1995. 'Imprint of sub‐25 nm vias and trenches in polymers', Applied physics letters, 67: 3114-16.
[6].S. Y. Chou, R. K. Peter, and J. R. Preston, 1996. 'Nanoimprint lithography', Journal of Vacuum Science & Technology B, 14: 4129-33.
[7].S. Y. Chou, R. K. Peter, W. Zhang, L. Guo, and L. Zhuang, 1997. 'Sub-10 nm imprint lithography and applications', Journal of Vacuum Science & Technology B, 15:2897-904.
[8].K. J. Morton, N. Gregory, B. Shufeng, and S. Y. Chou, 2008. 'Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (> 50: 1) silicon pillar arrays by nanoimprint and etching', Nanotechnology, 19: 345301.
[9].H. Tan, G. Andrew, and S. Y. Chou, 1998. 'Roller nanoimprint lithography', Journal of Vacuum Science & Technology B, 16: 3926-28.
[10].N. S. Ong, Y. H. Koh, and Y. Q. Fu, 2002. 'Microlens array produced using hot embossing process', Microelectronic Engineering, 60: 365-79.
[11].J. Taniguchi, Y. Tokano, I. Miyamoto, M. Komuro, and H. Hiroshima, 2002. 'Diamond nanoimprint lithography', Nanotechnology, 13: 592.
[12].Y. Hirai, T. Ushiro, T. Kanakugi, and T. Matsuura, 2003. "Fine gold grating fabrication on glass plate by imprint lithography." In Proc. of SPIE Vol, 75.
[13].S. W. Ahn, K. D. Lee, J. S. Kim, S.H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, 2005. 'Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching', Microelectronic Engineering, 78: 314-18.
[14].H. L. Chen, S. Y. Chuang, H. C. Cheng, C.H. Lin, and T.C. Chu, 2006. 'Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure', Microelectronic Engineering, 83: 893-96.
[15].Y. Hirai, Y. Onishi, T. Tanabe, M. Shibata, T. Iwasaki, and Y. Iriye, 2008. 'Pressure and resist thickness dependency of resist time evolutions profiles in nanoimprint lithography', Microelectronic Engineering, 85: 842-45.
[16].M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, 2000. 'Fabrication of nanostructures using a UV-based imprint technique', Microelectronic Engineering, 53:233-36.
[17].H. Lee, and G. Y. Jung, 2004. 'UV curing nanoimprint lithography for uniform layers and minimized residual layers', Japanese journal of applied physics, 43: 8369.
[18].Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, 2009. 'Hybrid nanoimprint− soft lithography with sub-15 nm resolution', Nano letters,9: 2306-10.
[19].B. Farshchian, A. Alborz, S. M. Hurst, J. Wu, J. Lee, and S. Park, 2011. 'Soft UV-nanoimprint lithography on non-planar surfaces', Microelectronic Engineering, 88: 3287-92.
[20].蔡宗河,CO2雷射加工,全華科技圖書股份有限公司,1995.
[21].林三寶,雷射原理與應用,全華圖書股份有限公司,2009.
[22].P. Mannion, J. Magee, E. Coyne, and G. M. O'Connor, 2003. "Ablation thresholds in ultrafast laser micromachining of common metals in air." In Opto Ireland, 470-78. International Society for Optics and Photonics.
[23].丁勝懋,雷設工程導論,中央圖書出版社,1995.
[24].許育豪,”飛秒雷射至做金屬玻璃微奈米轉印精密模具應用分析(Applications and analyses of precise nanoimprint mold of metallic glass fabricated by femtosecond laser)”,國立台灣科技大學,2011.
[25].Y. P. Kathuria, 1998. "Laser microprocessing of stent for medical therapy." In Micromechatronics and Human Science, 1998. MHS'98. Proceedings of the 1998 International Symposium on, 111-14. IEEE.
[26].H. Y. Meng, J. H. Liao, B.G. Guan, Q.M. Zhang, and Y. H. Zhou, 2007. 'Fiber laser cutting technology on coronary artery stent', Chinese Journal of Lasers, 34: 733.
[27].K. F. Kleine, B. Whitney, and K.G. Watkins, 2002. "Use of fiber lasers for micro cutting applications in the medical device industry." In 21st International Congress on Applications of Lasers and Electro-Optics, Scottsdale. Citeseer.
[28].M. Baumeister, K. Dickmann, and T. Hoult, 2006. 'Fiber laser micro-cutting of stainless steel sheets', Applied Physics A, 85: 121-24.
[29].M. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, 2012. 'Study of moiré grating fabrication on metal samples using nanoimprint lithography', Optics express, 20: 2942-55.
[30].S. Fan, Y. Shi, L. Yin, L. Feng, and H. Liu, 2013. "A study on the fabrication of main scale of linear encoder using continuous roller imprint method." In Sixth International Symposium on Precision Mechanical Measurements, 89163W-63W-8. International Society for Optics and Photonics.
[31].J. H. Chang, F. S. Cheng, C. C. Chao, Y. C. Weng, S. Y. Yang, and L. A. Wang, 2005. 'Direct imprinting using soft mold and gas pressure for large area and curved surfaces', Journal of Vacuum Science & Technology A, 23: 1687-90.
[32].J. H. Chang, and S. Y. Yang, 2005. 'Development of fluid-based heating and pressing systems for micro hot embossing', Microsystem Technologies, 11: 396-403.
[33].J. H. Jeong, K. D. Kim, Y. S. Sim, H. Sohn, and E. S. Lee, 2005. 'A step-and-repeat UV-nanoimprint lithography process using an elementwise patterned stamp', Microelectronic Engineering, 82: 180-88.
[34].H. Gao, H. Tan, W. Zhang, K. Morton, and S. Y. Chou, 2006. 'Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field', Nano letters, 6:2438-41.
[35].F. S. Cheng, S. Y. Yang, and C. C. Chen, 2008. 'Novel hydrostatic pressuring mechanism for soft UV-imprinting processes', Journal of Vacuum Science & Technology B, 26: 132-36.
[36].R. K. Willardson, E. R. Weber, T. D. Moustakas, and J. I. Pankove, 1998. Gallium-Nitride (GaN) II (Academic Press).
[37].史光國編著”現代半導體發光及雷射二極體材料技術”,全華科技圖書,2001.
[38].S. Zamir, B. Meyler, and J. Salzman, 2001. 'Lateral confined epitaxy of GaN layers on Si substrates', Journal of crystal growth, 230: 341-45.
[39].D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, 2010. 'InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates', Applied physics letters, 96: 201106.
[40].T. Hikosaka, T. Tanikawa, Y. Honda, M. Yamaguchi, and N. Sawaki, 2008. 'Fabrication and properties of semi‐polar (1‐101) and (11‐22) InGaN/GaN light emitting diodes on patterned Si substrates', physica status solidi (c), 5: 2234-37.
[41].Y. Lii, Y. C. Chang, and S. Sze, 1996. "Etching. ULSI technology." In.: McGraw-Hill Inc., New York, USA.
[42].H. Gobrecht, P. J. Holmes, 1962 The Electrochemistry of Semiconductors. Academic Press, London und New York, 1962; Band X aus der Reihe „Physical Chemistry” 396 Seiten, 134 Abbildungen, 32 Tabellen, 772 Literaturhinweise. Preis: 84 s', Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 66: 769-69.
[43].J. H. Chang, and S. Y. Yang, 2003. 'Gas pressurized hot embossing for transcription of micro-features', Microsystem Technologies, 10: 76-80.
[44].林雅玲, “感應耦合式電漿蝕刻技術對氮化鎵的蝕刻研究(Study of Inductively Coupled Plasma Etching on GaN)” ,中原大學, 2001.
[45].S. Lan, H. J. Lee, E. H. Kim, J. Ni, S. H. Lee, X. Lai, J. H. Song, N. K. Lee, and M. G. Lee, 2009. 'A parameter study on the micro hot-embossing process of glassy polymer for
pattern replication', Microelectronic Engineering, 86: 2369-74.
[46].W. Zhou, 2013. Nanoimprint lithography: an enabling process for nanofabrication (Springer Science & Business Media).
[47].林宜秀,”以氣體輔助轉印開發圖案化矽基板(Development of Patterned Silicon Substrate by Gas-Assisted Imprinting)”,國立台灣科技大學,2015.
[48].T. Kugler, and M. Naeem, 2002. 'Material processing with super modulation', ICALEO 2002 proceedings, Phoenix.
[49].H. Misawa, and S. Juodkazis, 2006. 3D laser microfabrication: principles and applications (John Wiley & Sons).
[50].張國順、鄭壽昌,“現代雷射製造技術”,456-459頁,2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top