跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 14:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳權憲
研究生(外文):Chuan-Hsien Wu
論文名稱:孔隙檔板對於密度界面之穿透性捲增的影響
論文名稱(外文):The penetrative entrainment at the density interface by a flow passing through a porous baffle
指導教授:林怡均林怡均引用關係
指導教授(外文):Yi-Jiun Peter LIN
口試委員:林怡均
口試委員(外文):Yi-Jiun Peter LIN
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:103
中文關鍵詞:穿透性捲增孔隙檔板升流模型噴泉模型
外文關鍵詞:Penetrative entrainmenPorous baffleThe plume modelThe fountain model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究孔隙檔板對於密度界面之穿透性捲增的影響, 研究內容包括理論分析與實驗工作, 實驗工作在壓克力模型內進行鹽浴實驗, 在穩態時, 有兩層不同密度的流體。實驗分為兩個系列,Exp.(100%) 與Exp.(62%) 系列,Exp.(100%) 系列沒有任何孔隙檔板在模型內部, Exp.(62%) 系列
在清水噴嘴出口約距1 cm 處擺置一個孔隙率為62%的檔板, 兩個系列根據清水源頭流量, 各別有三組實驗, 分別為10, 15和25 cm3s−1, 鹽水源頭在所有實驗中的流量固定為2.5 cm3s−1, 鹽水密度的範圍為1.09410 ∼1.09484 g cm−3。 實驗結果顯示, 密度界面的高度與清水源頭的動量有關, 本實驗工作使 用固定出口截面積的噴嘴, 隨著清水源頭流量增大, 清水源頭的動量增大, 密度界面到源頭的距離增加。與Exp.(100%) 系列相比, 在相同的清水源頭流量時,Exp.(62%) 系列減少密度界面到源頭的距離。 研究結果顯示, 上層流體的密度只與清水源頭流量和鹽水的浮力通量有關, 在固定的鹽水浮力通量條件時, 清水的源頭流量增加, 上層流體的密度隨之減小。然而兩層流體之間的密度差距與密度界面的捲增流量有關, 密度界面的高度和孔隙檔板扮演重要的角色, 與Exp.(100%) 系列兩層流體之間的密度差距相比, 在相同的清水源頭流量時,Exp.(62%) 系列有較高的密度差距。
The purpose of this research is to study the penetrative entrainment at the density interface by a flow passing through a porous baffle. The salt-bath technique is employed to conduct the experiments in an acrylic tank. In the steady state, there are two layers in the tank and each layer of them has individual density. Experiments are categorized into two series, Exp.(100%) and Exp.(62%). The Exp.(62%) series has a porous baffle, which is located about 1 cm away from the fresh water source nozzle, but the Exp.(100%) series does not have any baffle. Each series includes experiments with three different fresh water source flow rates, i.e. 15, 20 and 25 cm3s−1. The source of salt solution with a fixed flow rate, 2.5 cm3s−1, and the range of the density, from 1.09410 to 1.09484 g cm−3, give similar buoyancy fluxes in all experiments. Experimental results show that the distance between the fresh water source nozzle and the density interface increases with the fresh water source flow rate in the same series of experiments with the same source nozzle. Compared with the Exp.(100%) series, the Exp.(62%) series has a reduction distance between the source nozzle and the interface for the same fresh water source flow rate. The density of the upper dilute layer is determined by the buoyancy flux of the salt solution source and the flow rate
in the tank. As the flow rate increase, the density of the upper dilute layer decrease. In addition to the distance between the source nozzle and the interface, the porous baffle plays a role in the density step between two layers, which is determined by the penetrative entrainment flow rate at the interface. For the experiments with the same fresh water source flow rate, the Exp.(62%) series has a higher density step. Experimental results give the range of the penetrative entrainment rate from 0.77 to 1.12 when the range of the local Richardson number is from 0.47 to 4.05.
1.緒論
2.理論分析模型
3.實驗設置與方法
4.實驗結果與討論
5.結論與建議
[1] Baines,W. D. (1975), Entrainment by a plume or jet at a density interface. Journal of Fluid Mechanics, 68 (2), 309-320.
[2] Kumagai, M. (1984), Turbulent buoyant convection from a source in a confined two-layered region. Journal of Fluid Mechanics, 147, 105-131.
[3] Lin, Y. J. P. and Linden, P. F. (2005), A model for an under floor air distribution system. Energy and Building, 37 (4), 399-409.
[4] Lin, Y. J. P. and Linden, P. F. (2005), The entrainment due to a turbulent fountain at a density interface. Journal of Fluid Mechanics, 542, 25-52.
[5] Lin, Y. J. P. and Yu, Y. W. (2016), The Emptying-box problem with a baffle of different porosity percentages. International Journal of Heat and Mass Transfer, 94, 335-342.
[6] Lin, Y. J. P. and Fan, Y. C. (2016), Study on emptying-box problem with different inflow directions. International Journal of Heat and Mass Transfer, 92, 1009-1017.
[7] Bear, J. (1972), Dynamics of fluids in porous media. New York: American Elsevier Publishing Company, Inc., ISBN-10: 0-486-65675-6.
[8] Hunt, G. R. and Kaye, N. G. (2001), Virtual origin for lazy turbulent plumes. Journal of Fluid Mechanics, 435, 377-396.
[9] Fischer, H. B., List, E. J., Koh, C. Y., Imberger, J. and Brooks, N. H. (1979), Mixing in inland and coastal waters. Academic Press, ISBN-10: 0-12-258150-4.
[10] 林志龍, (2012), 探討置換式通風對於室內環境流場分層的影響。國立台灣科技大學碩士論文。
[11] Bloomfield, L. J. and Kerr, R. C. (2000), A theoretical model of a turbulent fountain. Journal of Fluid Mechanics, 424, 197-216.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top