跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳彥鈞
研究生(外文):Yen-Chun Chen
論文名稱:一般型平面雙纜線驅動連續體機構之位移分析與驗證
論文名稱(外文):Displacement Analysis and Experimental Verification of a General Two-Wire-Driven Planar Continuum Mechanism
指導教授:郭進星郭進星引用關係
指導教授(外文):Chin-Hsing KUO
口試委員:郭進星
口試委員(外文):Chin-Hsing KUO
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:87
中文關鍵詞:連續體機器人連續體機構偽剛體模型有限元素分析運動分析
外文關鍵詞:continuum robotcontinuum mechanismpseudo-rigid-body modelfinite element analysiskinematic analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
偽剛體3R模型法(Pseudo-rigid-body 3R model, PRB 3R)為近年被發展出的一種樑分析理論,該方法將樑假想為一個具四桿三接頭的剛性串聯機構,且每個接頭上皆有一扭簧,當樑(即機構)末端受一外力,即可藉由扭簧與桿件之間的力量與位移關係,等效出樑末端受力下的位置與方位。本文應用PRB 3R模型法於一般型平面雙超彈性纜線驅動連續體機構(Continuum mechanism)之位移分析,於給定兩條超彈性纜線長度之條件下,求解末端效應器的位置與方位。本研究並使用ANSYS有限元素分析軟體與實驗驗證其理論分析誤差與效率。分析範圍為纜線初始長度在200至300 mm間、推拉長度在0至50 mm之間、下平板之纜線垂直間距為35至60 mm之間、且上平板之纜線垂直間距為35至40 mm之間。研究結果顯示, PRB 3R模型法與實驗數據相較於ANSYS分析結果之最大位置誤差分別為1.96 %與4.88 %,最大方位誤差分別為2.23 %與4.01 %。在計算效率方面,PRB 3R模型法計算平均時間為0.12秒,而ANSYS分析平均時間為74.6秒,PRB 3R模型法的計算效率明顯優於ANSYS分析時間。
The pseudo-rigid-body 3R model (PRB 3R) is a relatively new method for beam analysis. It considers a beam as a four-bar articulating chain with three revolute joints. Each joint is associated with a torsional spring, which collaboratively bear the applied force at the end point of the chain (i.e., the tip of the beam). Based on suitable ratios of link lengths and spring stiffnesses of the four-bar chain, the displacement of the tip of the beam can be approximated by solving the kinematics and force equations of the four-bar chain. This thesis employs the PRB 3R model to analyze the displacement of the general planar continuum mechanism driven by two superelastic wires. In this study, the lengths of the two superelactic wires are given, and the position and orientation of the end-effector are to be found. A couple of numerical examples with different geometric parameters are studied. The results obtained by using PRB 3R model are verified by ANSYS software and experiments. The boundary conditions for the experiments are that the initial wire lengths are between 200 to 300 mm, the manipulating wire lengths, i.e., the inputs, are from 0 to 50 mm, and the distances between the wire connecting points on the ground and end-effector is from 35 to 60 mm and 35 to 40 mm, respectively. It shows that, as compared to the ANSYS analytical results, the percentage position errors of the PRB 3R model and the experiments are within 1.96% and 4.88%, respectively. And, the percentage orientation errors are within 2.23% and 4.01%, respectively. Furthermore, the program run times of the ANSYS is 74.6 seconds in average, while that of PRB 3R model is 0.12 seconds in average, which obviously much faster than the commercial software ANSYS.
摘要
ABSTRACT
致謝
目錄
表目錄
圖目錄
第一章 緒論
1.1 研究動機
1.2 文獻回顧
1.3 研究目的
1.4 論文架構
第二章 一般型平面雙纜線驅動連續體機構之位移分析
2.1 平面雙纜線驅動連續體機構構造
2.2 問題敘述與基本假設
2.3 偽剛體模型法求解
2.3.1 PRB 3R model基本理論
2.3.2 平面雙纜線驅動連續體機構之PRB 3R model求解
2.4 數值範例
2.5 討論
2.6 小結
第三章 有限元素法驗證
3.1 建模與設定
3.2 收歛性分析
3.3 數值範例驗證
3.4 討論
3.5 小結
第四章 實驗與結果比較
4.1 實驗設備與流程
4.2 實驗模型之參數調整
4.3 實驗結果
4.4 數據比較與驗證
4.5 誤差討論
4.6 小結
第五章 結論與未來展望
5.1 結論
5.2 未來展望
參考文獻
[1]Suzumori, K., Iikura, S., Tanaka, H., 1992, “Applying a Flexible Microactuator to Robotic Mechanisms,” IEEE Control Systems, 12(1), pp. 21-27.
[2]Immega, G., Antonelli, K., Ko, J., 1995, “Teleoperation of the Ksi Tentacle Manipulator for Hot Cell Decontamination,” IEEE International Conference on Intelligent Systems for the 21st Century, Nagoya, Japan, 21-27 May, pp. 2133-2136.
[3]Cies´lak, R., Morecki, A., 1999, “Elephant Trunk Type Elastic Manipulator-a Tool for Bulk and Liquid Materials Transportation,” Robotica, 17(1), pp. 11-16.
[4]Lane, D. M., Davies, J. B. C., Robinson, G., O’Brien, D. J., Sneddon, J., Seaton, E., Elfstrom, A., 1999, “The Amadeus Dextrous Subsea Hand: Design, Modeling, and Sensor Processing,” IEEE Journal of Oceanic Engineering, 24(1), pp. 96-111.
[5]Tsukagoshi, H., Kitagawa, A., Segawa, M., 2001, “Active Hose: An Artificial Elephant's Nose with Maneuverability for Rescue Operation,” IEEE International Conference on Robotics and Automation, Seoul, Korea, 21-26 May, Vol. 3, pp. 2454-2459.
[6]Anscombe, R., Buckinham, R., Graham, A., Parry, N., Lichon, M., 2006, “Snake-Arm Robots Conduct Nuclear Maintenance,” Proceedings of the International Youth Nuclear Congress Olkiluoto, Finland, 18-23 June, p 246.
[7]Dario, P., Carrozza, M. C., Marcacci, M., D’Attanasio, S., Magnami, B., Tonet, O., Megali, G., 2000, “A Novel Mechatronic Tool for Computer-Assisted Arthroscopy,” IEEE Transactions on Information Technology in Biomedicine, 4(1), pp. 15-29.
[8]Ikuta, K., Tsukamoto, M., Hirose, S., 1988, “Shape Memory Alloy Servo Actuator System with Electric Resistance Feedback and Application for Active Endoscope,” IEEE International Conference on Robotics and Automation, Phililadelphia, PA, USA, 24-29 April, pp. 427-430.
[9]Nakamura, Y., Matsui, A., Saito, T., Yoshimoto, K., 1995, “Shape-Memory-Alloy Active Forceps for Laparoscopic Surgery,” IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21-27 May, pp. 2320-2327.
[10]Peirs, J., Reynaerts, D., Brussel, H. V., Gersem, G. D., Tang, H. T., 2003, “Design of an Advanced Tool Guiding System for Robotic Surgery,” IEEE International Conference on Robotics and Automation, Tapei, Taiwan, 14-19 September, pp. 2651-2656.
[11]Webster, R. J., Kim, J. S., Cowan, N. J., Chirikjian, G. S., Okamura, A. M., 2006, “Nonholonomic Modeling of Needle Steering,” The International Journal of Robotics Research, 25(5-6), pp. 509-525.
[12]Jienan, D., Goldman, R. E., Kai, X., Allen, P. K., Fowler, D. L., Simaan, N., 2013, “Design and Coordination Kinematics of an Insertable Robotic Effectors Platform for Single-Port Access Surgery,” IEEE/ASME Transactions on Mechatronics, 18(5), pp. 1612-1624.
[13]Camarillo, D. B., Milne, C. F., Carlson, C. R., Zinn, M. R., Salisbury, J. K., 2008, “Mechanics Modeling of Tendon Driven Continuum Manipulators,” IEEE Transactions on Robotics, 24(6), pp. 1262-1273.
[14]Hirose, S., Ma, S., 1991, “Coupled Tendon-Driven Multijoint Manipulator,” IEEE International Conference on Robotics and Automation, Osaka, Japan, 3-5 November, pp. 1268-1275.
[15]Hu, H., Wang, P., Zhao, B., Li, M., Sun, L., 2009, “Design of a Novel Snake-Like Robotic Colonoscope,” IEEE International Conference on Robotics and Biomimetics, Guilin, China, 19-23 December, pp. 1957-1961.
[16]Larson, O., Davidson, C., 1985, Flexible Arm, Particularly a Robot Arm, US Patent No. 4,494,417.
[17]Li, C., Rahn, C. D., 2002, “Design of Continuous Backbone, Cable-Driven Robots,” ASME Journal of Mechanical Design, 124(2), pp. 265-271.
[18]Dupont, P. E., Lock, J., Butler, E., 2009, “Torsional Kinematic Model for Concentric Tube Robots,” IEEE International Conference on Robotics and Automation, Kobe, Japan, 12-17 May, pp. 3851-3858.
[19]Dupont, P. E., Lock, J., Itkowitz, B., Butler, E., 2010, “Design and Control of Concentric Tube Robots,” IEEE Transactions on Robotics, 26(2), pp. 209-2225.
[20]Webster, R. J., Okamura, A. M., Cowan, N. J., 2006, “Toward Active Cannulas: Miniature Snake-Like Surgical Robots,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Orlando, FL, USA, 15-19 May, pp. 2857-2863.
[21]Webster, R. J., Romano, J. M., Cowan, N. J., 2009, “Mechanics of Precurved-Tube Continuum Robots,” IEEE Transactions on Robotics, 25(1), pp. 67-78.
[22]Gravange, I. A., Rahn, C., Walker, I. D., 2003, “Large Deflection Dynamics and Control for Planar Continuum Robots,” IEEE/ASME Transactions on Mechatronics, 8(2), pp. 299-307.
[23]Lian, W. N., 2012, Kinematic Analysis of a Superelastic-Wire-Embedded Flexible Tube Mechanism, Master thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
[24]Jones, B. A., Walker, I. D., 2006, “Kinematics for Multisection Continuum Robots,” IEEE Transactions on Robotics, 22(1), pp. 43-55.
[25]Jones, B. A., Walker, I. D., 2006, “Practical Kinematics for Real-Time Implementation of Continuum Robots,” IEEE Transactions on Robotics, 22(6), pp. 1087-1099.
[26]Jones, B. A., Walker, I. D., 2007, “Limiting-Case Analysis of Continuum Trunk Kinematics,” IEEE International Conference on Robotics and Automation, Roma, Italy, 10-14 April, pp. 1363-1368.
[27]Chirikjian, G. S., Burdick, J. W., 1994, “A Modal Approach to Hyper-Redundant Manipulator Kinematics,” IEEE Transactions on Robotics and Automation, 10(3), pp. 343-353.
[28]Ebeert-Uphoff, I., Chirikjian, G. S., 1996, “Inverse Kinematics of Discretely Actuated Hyper-Redundant Manipulators Using Workspace Densities,” IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22-28 April, pp. 139-145.
[29]Lian, W.-N., Kuo, C.-H., 2013, “Inverse Kinematics of a Wire-Actuated Constant-Curvature Flexural Mechanism in General Geometry,” The 3rd IFToMM International Symposium on Robotics and Mechatronics, Singapore, 2-4 October.
[30]Paljug, E., Ohm, T., Hayati, S., 1995, “The JPL Serpentine Robot: A 12-Dof System for Inspection,” IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21-27 May, pp. 3143-3148.
[31]Suthakorn, J., Chirikjian, G. S., 2001, “A New Inverse Kinematics Algorithm for Binary Manipulators with Many Actuators,” Advanced Robotics, 15(2), pp. 225-244.
[32]Wright, C., Johnson, A., Peck, A., McCord, Z., Naaktgeboren, A., Gianfortoni, P., Gonzalez-Rivero, M., Hatton, R., Choset, H., 2007, “Design of a Modular Snake Robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October-2 November, pp. 2609-2614.
[33]Mahl, T., Mayer, A. E., Hildebrandt, A., Sawodny, O., 2013, “A Variable Curvature Modeling Approach for Kinematic Control of Continuum Manipulators,” American Control Conference, Washington, DC, USA, 17-19 June, pp. 4945-4950.
[34]Simaan, N., Xu, K., 2010, “Analytic Formulation for Kinematics, Statics, and Shape Restoration of Multibackbone Continuum Robots Via Elliptic Integrals,” ASME Journal of Mechanisms and Robotics, 2(1), p. 011006.
[35]Hasanzadeh, S., Janabi-Sharifi, F., 2014, “An Efficient Static Analysis of Continuum Robots,” ASME Journal of Mechanisms and Robotics, 6(3), p. 031011.
[36]Rucker, D. C., Webster, R. J., 2011, “Statics and Dynamics of Continuum Robots with General Tendon Routing and External Loading,” IEEE Transactions on Robotics, 27(6), pp. 1033-1044.
[37]Gravagne, I. A., Walker, I. D., 2002, “Manipulability, Force, and Compliance Analysis for Planar Continuum Robots,” IEEE Transactions on Robotics and Automation, 18(3), pp. 263-273.
[38]Pan, T. Y., 2014, Variable-Curvature Kinematic Models for Wire-Actuated Continuum Robots: A Comparative Study, Master thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
[39]Awtar, S., Sen, S., 2010, “A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation,” ASME Journal of Mechanical Design, 132(8), p. 081008.
[40]Awtar, S., Slocum, A. H., Sevincer, E., 2007, “Characteristics of Beam-Based Flexure Modules,” ASME Journal of Mechanical Design, 129(6), pp. 625-639.
[41]Chimento, J., Lusk, C., Alqasimi, A., 2014, “A 3-D Pseudo-Rigid Body Model for Rectangular Cantilever Beams with an Arbitrary Force End-Load,” ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE), Buffalo, NY., USA, 17-20 August, Paper No. DETC2014-34292.
[42]Khoshnam, M., Patel, R. V., 2013, “A Pseudo-Rigid-Body 3r Model for a Steerable Ablation Catheter,” IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6-10 May, pp. 4427-4432.
[43]Ma, F., Chen, G., 2016, “Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model,” ASME Journal of Mechanisms and Robotics, 8(2), p. 021018.
[44]Trivedi, D., Lotfi, A., Rahn, C. D., 2008, “Geometrically Exact Models for Soft Robotic Manipulators,” IEEE Transactions on Robotics, 24(4), pp. 773-780.
[45]Saalschütz, L., 1880, The Loaded Rod under the Action of a Lateral Force: Based on the Strict Expression for the Radius of Curvature (in German), B. G. Teubner Verlag, Leipzig, Saxony, German.
[46]Byrd, P. F., Friedman, M. D., 1971, Handbook of Elliptic Integrals for Engineers and Scientists, Vol. 67, Springer Berlin.
[47]Kimball, C., Tsai, L. W., 2002, “Modeling of Flexural Beams Subjected to Arbitrary End Loads,” ASME Journal of Mechanical Design, 124(2), pp. 223-235.
[48]Zhang, A. M., Chen, G. M., 2013, “A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms,” ASME Journal of Mechanisms and Robotics, 5(2), p. 021006.
[49]Lee, E. H., Forsythe, G. E., 1973, “Variational Study of Nonlinear Spline Curves,” SIAM Review, 15(1), pp. 120-133.
[50]Howell, L., Midha, A., Norton, T., 1996, “Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms,” ASME Journal of Mechanical Design, 118(1), pp. 126-131.
[51]Su, H. J., 2009, “A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads,” ASME Journal of Mechanisms and Robotics, 1(2), p. 021008.
[52]Chen, G. M., Xiong, B. T., Huang, X. B., 2011, “Finding the Optimal Characteristic Parameters for 3R Pseudo-Rigid-Body Model Using an Improved Particle Swarm Optimizer,” Precision Engineering, 35(3), pp. 505-511.
[53]Dhatt, G., Lefrançois, E., Touzot, G., 2012, Finite Element Method, John Wiley & Sons, New Jersey, USA.
[54]Awtar, S., Slocum, A. H., Sevincer, E., 2006, “Characteristics of Beam-Based Flexure Modules,” ASME Journal of Mechanical Design, 129(6), pp. 625-639.
[55]Odhner, L. U., Dollar, A. M., 2012, “The Smooth Curvature Model: An Efficient Representation of Euler–Bernoulli Flexures as Robot Joints,” IEEE Transactions on Robotics, 28(4), pp. 761-772.
[56]Rubin, M. B., 2013, Cosserat Theories: Shells, Rods and Points, Vol. 79, Springer Science & Business Media, Berlin, Germany.
[57]Tsai, L. W., 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, New York, NY, USA.
[58]Zhongrui Material Technology Corp., 2016; Available from: http://tw.asiamachinery.net/supplier/profile.asp?SupID=4484.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top