跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/18 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪逸杰
研究生(外文):Yi-Jie Hong
論文名稱:應用多光譜三維微粒循跡測速儀於具穩態射流之微流體裝置之三維流場量測
論文名稱(外文):Measurement of the Three-Dimensional Flow Field of a Steady-Streaming Microfluidic Device Using Multi-Spectra Three-Dimensional Micro-Particle Tracking Velocimetry
指導教授:田維欣
指導教授(外文):Wei-Hsin Tien
口試委員:田維欣
口試委員(外文):Wei-Hsin Tien
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:155
中文關鍵詞:微粒循跡測速儀微粒影像測速儀穩態射流
外文關鍵詞:Particle Tracking VelocimetryMicro Particle Image VelocimetrySteady-Streaming
相關次數:
  • 被引用被引用:3
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究研發一創新之三維微流場量測技術-多光譜三維微粒循跡測速儀(Multi-Spectra 3-D
A novel volumetric technique, the Multi-Spectra Three-Dimensional Micro-Particle Tracking Velocimetry (Multi-Spectra 3-D
目錄
摘要 I
Abstract II
致謝 IV
目錄 V
符號索引 VIII
圖表目錄 X
第 1 章 緒論 1
1.1 介紹 1
1.2 文獻回顧 2
1.2.1 穩態射流渦旋(Steady streaming vortex) 2
1.2.1.1 不同結構中穩態射流渦旋觀測 3
1.2.1.2 微小生物或微粒捕捉 4
1.2.1.3 溶液混合及微泵浦 5
1.2.1.4 小結 6
1.2.2 光學流場量測技術 6
1.2.2.1 微粒影像測速儀 (Particle image velocimetry) 6
1.2.2.2 微粒循跡測速儀 (Particle tracking velocimetry) 7
1.2.2.3 Defocusing digital particle image velocimetry 7
1.2.2.4 小結 10
1.3 研究目的 11
1.4 論文架構 11
第 2 章 實驗原理 13
2.1 光學投影原理 13
2.2 校正實驗 14
2.2.1 操作流程 14
2.2.2 格點影像分析 15
2.2.3 極線搜尋方法 15
2.2.4 校正關係方程式 16
第 3 章 實驗方法 18
3.1 多光譜三維微粒循跡測速系統 18
3.1.1 倒立顯微鏡硬體設備 18
3.1.2 雷射光源 18
3.1.3 高速攝影機擷取系統 19
3.1.4 分光模組 19
3.1.5 影像操作系統 19
3.1.6 Matlab 人機介面介紹 20
3.1.7 校正實驗設備設置 20
3.2 穩態射流微流體裝置製作流程 21
3.2.1 壓克力模具切削 21
3.2.2 PDMS 翻模 22
3.2.3 氧電漿黏合 23
3.2.4 穩態射流渦旋驅動裝置 24
3.2.5 微流道內微粒濃度 24
3.3 實驗步驟流程 25
第 4 章 結果與討論 28
4.1 流動驗證結果 28
4.2 不同結構之下整體流場流動結果 29
4.2.1 小結 31
4.3 綜合流場比較結果 31
4.4 流動現象討論 33
4.4.1 速度大小 34
4.4.2 渦旋大小 36
第 5 章 結論與建議 39
5.1 結論 39
5.2 建議與未來工作 40
參考文獻 42
[1] Nguyen N T & Wereley S T (2002) Fundamentals and applications of microfluidics. Artech House, Norwood.
[2] Xia Y, Whitesides G M (1998) Soft lithography. Annu Rev Mater Sci 28:153 184.
[3] Cheng Y F (2015) A capillary driven microfluidic chip for uniform blood
distribution. Master thesis, NTUST, Taipei Taiwan.
[4] Whitesides G M (2006) The origins and future of microfluides. Nature
442:368-373.
[5] Ozcelik A, Ahmed D, Xie Y et al (2014) An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls. Anal Chem 86: 5083-5088.
[6] Patel M V, Nanayakkara I A, Simon M G et al (2014) Cavity-induced
microstreaming for simultaneous on-chip pumping and size-based separation of
cells and particles. Lab Chip 14:3860-3872.
[7] Lieu V H, House T A, Schwartz D T (2012) Hydrodynamic tweezers: Impact of
design geometry on flow and microparticle trapping. Anal Chem 84:1963-1968.
[8] Lutz B R, Chen J, Schwartz D T (2005) Microscopic steady streaming eddies
created around short cylinders in a channel: Flow visualization and Stokes layer
scaling. Phys Fluids. doi:10.1063/1.1824137.
[9] Lutz B R, Chen J, Schwartz D T (2006) Hydrodynamic tweezers: 1. Noncontact
trapping of single cells using steady streaming microeddies. Anal Chem
78:5429-5435.
[10] Lin C M, Lai Y S, Liu H P et al (2008) Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. Anal Chem 80:8937-8945.
[11] Huang P H, Nama N, Mao Z et al (2014) A reliable and programmable
acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip
14:4319-4323.
[12] Mao X, Juluri B K, Lapsley M I et al (2010) Milliseconds microfluidic chaotic bubble mixer. Microfluid Nanofluid 8:139-144.
[13] Prasad A K (2000) Particle image velocimetry. Curr Sci India 79:51-60.
[14] Santiago J G, Wereley S T, Meinhart C D et al (1998) A particle image
velocimetry system for microfluidics. Exp Fluids 25:316-319.
[15] Pereira F, Stüer H, Graff E C et al (2006) Two-frame 3D particle tracking. Meas Sci Technol 17:1680-1692.
[16] Graff E C, Gharib M (2008) Performance prediction of point-based three-dimensional volumetric measurement systems. Meas Sci Technol. doi:10.1088/0957-0233/19/7/075403.
[17] Willert C E, Gharib M (1992) Three-dimensional particle imaging with a single camera. Exp Fluids 12:353-358.
[18] Pereira F, Gharib M, Dabiri D et al (2000) Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique.
Application to bubbly flows. Exp Fluids 29:078-084.
[19] Yoon S Y, Kim K C (2006) 3D particle position and 3D velocity field
measurement in a microvolume via the defocusing concept. Meas Sci Technol
17:2897-2905.
[20] Lu J, Pereira F, Fraser S E et al (2008) Three-dimensional real-time imaging of cardiac cell motions in living embryos. J Biomed Opt. doi:10.1117/1.2830824.
[21] Pereira F, Lu J, Castano-Graff E et al (2007) Microscale 3D flow mapping with μDDPIV. Exp Fluids 42:589-599.
[22] Kim K C (2012) Advances and applications on micro-defocusing digital particle image velocimetry (μ-DDPIV) techniques for microfluidics. J Mech Sci
Technol 26:3769-3784.
[23] Tien W H, Kartes P, Yamasaki T et al (2008) A color-coded back lighted
defocusing digital particle image velocimetry system. Exp Fluids 44:1015-1026.
[24] Tien W H, Dabiri D, Hove J R (2014) Color-coded three-dimensional micro
particle tracking velocimetry and application to micro backward -facing step
flows. Exp Fliuds 55:1-14.
[25] Tien W H (2013) 3-D Particle Tracking Velocimetry: Development and
Applications in Small Scale Flows. (Doctoral dissertation, University of
Washington).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top