[1]Y. Kawamura, "Flame-resistant Magnesium Alloys with High Strength" in the Seventh Triennial International Fire & Cabin Safety Research Conference, Philadelphia, December 2-5, 2013.
[2]E. Mora, G. Garces, E. Onorbe, P. Perez, P. Adeva, "High-strength Mg–Zn–Y alloys produced by powder metallurgy", Scripta Materialia, 2009. 60(9): p. 776-779.
[3]S. Cabeza, G. Garces, P. Perez, P. Adeva, "Properties of WZ21 (%wt) alloy processed by a powder metallurgy route", J Mech Behav Biomed Mater, 2015. 46: p. 115-26.
[4]Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, "Rapidly Solidified Powder Metallurgu Mg97Zn1Y2 Alloys with Excellent Tensile Yield Strength above 600MPa", Materials Transactions, 2001. 42(7): p. 1172-1176.
[5]D.H. Ping, K. Hono, Y. Kawamura, A. Inoue, "Local chemistry of a nanocrystalline high-strength Mg97Y2Zn1 alloy", Philosophical Magazine Letters, 2010. 82(10): p. 543-551.
[6]E. Abe, Y. Kawamura, K. Hayashi, A. Inoue, "Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM", Acta Materialia, 2002. 50: p. 3845-3857.
[7]A. Inoue, M. Matsushita, Y. Kawamura, K. Amiya, K. Hayashi, J. Koike, "Novel Hexagonal Structure of Ultra-High Strength Magnesium-Based Alloys", Materials Transactions, 2002. 43(3): p. 580-584.
[8]L. ChitsazKhoyi, Sh. Raygan, M. Pourabdoli, "Mechanical milling of Mg, Ni and Y powder mixture and investigating the effects of produced nanostructured MgNi4Y on hydrogen desorption properties of MgH2", International Journal of Hydrogen Energy, 2013. 38(16): p. 6687-6693.
[9]W.B. Fang, W. Fang, H.F. Sun, "Preparation of bulk ultrafine-grained Mg-3Al-Zn alloys by consolidation of ball milling nanocrystalline powders", Transactions of Nonferrous Metals Society of China, 2011. 21: p. s247-s251.
[10]M. Matsuda, Y. Kawamura, M. Nishida, "Production of High Strength Mg97Zn1Y2 Alloy by Using Mechanically Alloyed MgH2 Powder", Materials Transactions, 2003. 44(4): p. 440-444.
[11]H.C. Lee, C.G. Chao, T.F. Liu, C.Y. Lin, H.C. Wang, "Effect of temperature and extrusion pass on the consolidation of magnesium powders using equal channel angular extrusion", Materials Transactions, 2013. 54(5): p. 765-768.
[12]M. Moss, R. Lapovok, C.J. Bettles, "The equal channel angular pressing of magnesium and magnesium alloy powders", The Journal of The Minerals, Metals & Materials Society, 2007. 59(8): p. 54-57.
[13]A.V. Nagasekhar, T.H. Yip, R.K. Guduru, K.S. Ramakanth, "Multipass equal channel angular extrusion of MgB2 powder in tubes", Physica C: Superconductivity, 2007. 466(1-2): p. 174-180.
[14]A.V. Nagasekhar, T.H. Yip, K.S. Ramakanth, "Mechanics of single pass equal channel angular extrusion of powder in tubes", Applied Physics A, 2006. 85(2): p. 185-194.
[15]陳振華,镁合金,化學工業出版社(第一版),2004。
[16]許智為,等徑轉角擠製(ECAE)對AZ61添加不同強化相鎂基複合材料之機械性質研究,國立台灣科技大學機械工程系碩士論文,2014。[17]C. Blawert, N. Hort, K.U. Kainer, "Automotive applications of magnesium and its alloys", Trans. Indian Inst. Met, 2004. 57(4): p. 397-408.
[18]經濟部工業局,鎂合金成型產業資源化應用技術手冊,2006。
[19]K.U. Kainer, "Magnesium Alloys and Technology", WILEY-VCH Verlag GmbH & Co. KG aA, 2003.
[20]師昌緒,柯俊,R.W. Cahn著,丁道云等譯,非鐵合金的結構與性能(第八卷),科學出版社,1999。
[21]C.L. De Castro, B.S. Mitchell, "Nanoparticles from Mechanical Attrition", Ch. 1, in: M.-I. Baraton (Ed.), Synthesis, Functionalization and Surface Treatment of Nanoparticles, American Scientific Publishers, 2002. p.1-15.
[22]V.P. Balema, "Mechanical Processing in Hydrogen Storage Research and Development", Sigma-Aldrich, 2009. 2: p. 1-7.
[23]L. Lu, M.O. Lai, "Mechanical Alloying", Kluwer Academic Publisher, 1998.
[24]C. Suryanarayana, "Mechanical alloying and milling", Progress in Materials Science, 2001. 46: p. 1-184.
[25]D.L. Zhang, "Processing of advanced materials using high-energy mechanical milling", Progress in Materials Science, 2004. 49(3-4): p. 537-560.
[26]C. Suryanarayanaa, E. Ivanovb, V.V. Boldyrev, "The science and technology of mechanical alloying", Materials Science and Engineering, 2001. A304-306: p. 151-158.
[27]陳振華,陳鼎,機械合金化與固液反應球磨,2006。
[28]K. Yamada, C.C. Koch, "The influence of mill energy and temperature on the structure of the TiNi intermetallic after mechanical attrition", Journal of Materials Research, 1993. 8(06): p. 1317-1326.
[29]http://zzchangli.en.alibaba.com/product/1759769566210308309/ball_nose_end_mill_for_wood_grate_discharge_ball_mill_vibrating_ball_mill.html.
[30]C. Kursun, M. Gogebakan, "Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying", Journal of Alloys and Compounds, 2015. 619: p. 138-144.
[31]H.G. Faranak, M. Pourabdoli, S. Raygan, "Effect of process control agents on synthesizing nano-structured 2Mg–9Ni–Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2", Advanced Powder Technology, 2015. 26(2): p. 448-453.
[32]Y.F. Zhang, L. Lu, S.M. Yap, "Prediction of the amount of PCA for mechanical milling", Materials Processing Technology, 1999. 89-90: p. 260-265.
[33]P. Kuziora, M. Wyszynska, M. Polanski, J. Bystrzycki, "Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process", International Journal of Hydrogen Energy, 2014. 39(18): p. 9883-9887.
[34]V.M. Segal, Materials processing by simple shear. Materials Science and Engineering: A, 1995. A179: p. 157-164.
[35]http://www.foundationcoalition.org/resources/nano/2005-Mar 22_ECAE_Lecture_2.pdf.
[36]Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, "Principle of equal-channel angular pressing for the processing of ultra-fine grained materials", Scripta Materialia, 1995. 35: p. 143-146.
[37]R.Z. Valiev, T.G. Langdon, "Principles of equal-channel angular pressing as a processing tool for grain refinement", Progress in Materials Science, 2006. 51(7): p. 881-981.
[38]M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, "The shearing characteristics associated with equal-channel angular pressing", Materials Science and Engineering: A, 1998. A257: p. 328-332.
[39]Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, "The process of grain refinement in equal-channel angular pressing", Acta Materialia, 1997. 43: p. 3317-3331.
[40]O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, "ECAE consolidation of amorphous aluminum alloy powders", International Symposium on Processing and Fabrication of Advanced Materials XII, T.S. Srivatsan and R.A. Varin (Eds.) ASM International, Materials Park, OH, 2004, p. 346-357. .
[41]R. Derakhshandeh. H, A. Jenabali Jahromi, "An investigation on the capability of equal channel angular pressing for consolidation of aluminum and aluminum composite powder", Materials & Design, 2011. 32(6): p. 3377-3388.
[42]K. Matsuki, T. Aida, T. Takeuchi, J. Kusui, K. Yokoe, "Microstructural characteristics and superplastic-like behavior in aluminum powder alloy consolidated by equal -channel angular pressing", Acta Materialia, 2000. 48: p. 2625-2632.
[43]李萍,黃科帥,薛克敏,周明智,韓國民,純鋁粉末多孔燒結材料等通道轉角擠壓,中國有色金屬學報,2009,19(5): p. 881-886。
[44]J. Robertson, J.-T. Im, I. Karaman, K.T. Hartwig, I.E. Anderson, "Consolidation of amorphous copper based powder by equal channel angular extrusion", Journal of Non-Crystalline Solids, 2003. 317(1-2): p. 144-151.
[45]王曉溪,薛克敏,李萍,張翔,王成,純銅粉末包套-等徑轉角擠壓工藝實驗研究,武漢科技大學學報,2011,34(4): p. 253-257。
[46]G. Cakmak, T. Ozturk, "ECAP processing and mechanical milling of Mg and Mg–Ti powders: a comparative study", Journal of Materials Science, 2011. 46(16): p. 5559-5567.
[47]L.C. Zhang, J. Xu, E. Ma, "Consolidation and properties of ball-milled Ti50Cu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion", Materials Science and Engineering: A, 2006. 434(1-2): p. 280-288.
[48]H.P. Ng, C. Haase, R. Lapovok, Y. Estrin, "Improving sinterability of Ti–6Al–4V from blended elemental powders through equal channel angular pressing", Materials Science and Engineering: A, 2013. 565: p. 396-404.
[49]L. Li, M.O. Lai, M. Gupta, B.W. Chua, A. Osman, "Improvement of microstructure and mechanical properties of AZ91/SiC composite by mechanical alloying", Journal of materials science, 2000. 35: p. 5553-5561.