跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳家駿
研究生(外文):Chia-Chun Chen
論文名稱:Mg97Zn1Y2粉末經機械合金法及等通道轉角擠製固化後之微觀結構及機械性質之探討
論文名稱(外文):Microstructure and mechanical properties of mechanically-alloyed Mg97Zn1Y2 consolidated by equal channel angular extrusion
指導教授:丘群
指導教授(外文):Chun Chiu
口試委員:丘群
口試委員(外文):Chun Chiu
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:81
中文關鍵詞:機械合金化等通道轉角擠製Mg97Zn1Y2合金
外文關鍵詞:Mechanical alloyingEqual channel angular extrusionMg97Zn1Y2 alloy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究選用鎂、鋅、釔純元素粉末作為初始材料,以Mg97Zn1Y2的比例藉由機械合金法結合等通道轉角擠製製備Mg97Zn1Y2塊材合金,並加以500℃熱處理。研究的目的在探討熱處理、等通道轉角擠製路徑及道次對Mg97Zn1Y2塊材合金之成形性、相變化、顯微組織之差異以及機械性質之影響。
實驗結果顯示,以機械合金法製備的合金粉末含有α-Mg、Y及Y2O3相,並無Mg-Zn-Y之間的二元或三元相生成。等通道轉角擠製後的塊材合金含有α-Mg、MgO及Y2O3相,熱處理後的合金仍無二元或三元相生成。以Bc路徑經等通道轉角擠製四道次後能獲得最高的硬度(110Hv)及最大壓縮強度(185MPa),其中硬度值更是較傳統鑄造Mg97Zn1Y2來的高。由於合金中並沒有析出相之生成,因此本實驗中Mg97Zn1Y2塊材合金具有良好硬度的原因主要歸因於鋅跟釔(微量)的固溶強化和氧化鎂及氧化釔的散布強化。
In the present study, bulk Mg97Zn1Y2 alloy was prepared by mechanical alloying of pure element powders of Mg, Zn and Y, followed by consolidation using equal channel angular extrusion (ECAE) and heat treatment at 500℃. The purpose of this research is to investigate the effects of heat treatment, routes and passes of ECAE on the consolidation efficiency, phase transformation, microstructure and mechanical properties of the bulk Mg97Zn1Y2 alloy.
Experiment results show that the Mg97Zn1Y2 alloy powder prepared by mechanical alloying contains α-Mg, Y and Y2O3 phase. No binary or ternary phases among Mg, Zn and Y are formed in the milling process. Bulk Mg97Zn1Y2 alloy consolidated by ECAE also contains α-Mg, MgO and Y2O3. After heat treatment, binary or ternary phases are still not formed. Among all of the ECAE-consolidated samples, the one prepared using route Bc with four passes shows the highest hardness (110Hv) and ultimate compressive strength (185MPa). The hardness is even higher than that of the as-cast Mg97Zn1Y2 alloy. The high hardness in this study is originated form the solid solution hardening of Zn and Y (low content), and the dispersion hardening of MgO and Y2O3.
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻回顧 3
1.3.1 機械合金法製備鎂合金及其應用 3
1.3.2 ECAE粉末壓密在鎂及鎂合金上之應用 5
1.4 文獻回顧心得 7
第二章 理論基礎 8
2.1 鎂及鎂合金簡介 8
2.1.1 鎂合金的發展與應用 9
2.1.2 添加合金元素對鎂的影響 11
2.2 材料強化原理 12
2.3 機械合金法 13
2.3.1 金屬粉末的合金化過程 13
2.3.2 機械合金法的製程參數 16
2.4 等通道轉角擠製 23
2.4.1 ECAE塑性變形原理 23
2.4.2 ECAE擠型路徑 27
2.4.3 ECAE粉末壓密技術 ( ECAE Powder In The Tube,ECAE-PIT ) 30
第三章 實驗方法 32
3.1 實驗材料 33
3.2 試片準備 33
3.2.1 機械合金法 35
3.2.2 等通道轉角擠製(ECAE) 37
3.3 測試與分析 41
3.3.1 粉末與塊材顯微結構分析 41
3.3.2 粒徑分析 42
3.3.3 X-ray 繞射分析 43
3.3.4 硬度測試 44
3.3.5 壓縮測試 45
3.3.6 密度與孔隙率 46
第四章 實驗結果與討論 47
4.1 粉末形貌與相分析 47
4.1.1 粉末形貌與粒徑分析 47
4.1.2 X-Ray繞射分析 51
4.1.3 機械合金化試驗結論 54
4.2 粉末經等通道轉角擠製後的顯微組織觀察及相之分析 55
4.2.1 X-ray繞射分析 55
4.2.2 EDS分析 57
4.2.3 顯微組織觀察 63
4.3 塊材經熱處理後的顯微組織觀察及相之分析 69
4.3.1 X-ray繞射分析 69
4.3.2 顯微組織觀察 70
4.4 機械性質分析 72
4.4.1 密度及孔隙率分析 72
4.4.2 硬度分析 73
4.4.3 壓縮測試分析 75
第五章 結論 77
參考文獻 78
[1]Y. Kawamura, "Flame-resistant Magnesium Alloys with High Strength" in the Seventh Triennial International Fire & Cabin Safety Research Conference, Philadelphia, December 2-5, 2013.
[2]E. Mora, G. Garces, E. Onorbe, P. Perez, P. Adeva, "High-strength Mg–Zn–Y alloys produced by powder metallurgy", Scripta Materialia, 2009. 60(9): p. 776-779.
[3]S. Cabeza, G. Garces, P. Perez, P. Adeva, "Properties of WZ21 (%wt) alloy processed by a powder metallurgy route", J Mech Behav Biomed Mater, 2015. 46: p. 115-26.
[4]Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, "Rapidly Solidified Powder Metallurgu Mg97Zn1Y2 Alloys with Excellent Tensile Yield Strength above 600MPa", Materials Transactions, 2001. 42(7): p. 1172-1176.
[5]D.H. Ping, K. Hono, Y. Kawamura, A. Inoue, "Local chemistry of a nanocrystalline high-strength Mg97Y2Zn1 alloy", Philosophical Magazine Letters, 2010. 82(10): p. 543-551.
[6]E. Abe, Y. Kawamura, K. Hayashi, A. Inoue, "Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM", Acta Materialia, 2002. 50: p. 3845-3857.
[7]A. Inoue, M. Matsushita, Y. Kawamura, K. Amiya, K. Hayashi, J. Koike, "Novel Hexagonal Structure of Ultra-High Strength Magnesium-Based Alloys", Materials Transactions, 2002. 43(3): p. 580-584.
[8]L. ChitsazKhoyi, Sh. Raygan, M. Pourabdoli, "Mechanical milling of Mg, Ni and Y powder mixture and investigating the effects of produced nanostructured MgNi4Y on hydrogen desorption properties of MgH2", International Journal of Hydrogen Energy, 2013. 38(16): p. 6687-6693.
[9]W.B. Fang, W. Fang, H.F. Sun, "Preparation of bulk ultrafine-grained Mg-3Al-Zn alloys by consolidation of ball milling nanocrystalline powders", Transactions of Nonferrous Metals Society of China, 2011. 21: p. s247-s251.
[10]M. Matsuda, Y. Kawamura, M. Nishida, "Production of High Strength Mg97Zn1Y2 Alloy by Using Mechanically Alloyed MgH2 Powder", Materials Transactions, 2003. 44(4): p. 440-444.
[11]H.C. Lee, C.G. Chao, T.F. Liu, C.Y. Lin, H.C. Wang, "Effect of temperature and extrusion pass on the consolidation of magnesium powders using equal channel angular extrusion", Materials Transactions, 2013. 54(5): p. 765-768.
[12]M. Moss, R. Lapovok, C.J. Bettles, "The equal channel angular pressing of magnesium and magnesium alloy powders", The Journal of The Minerals, Metals & Materials Society, 2007. 59(8): p. 54-57.
[13]A.V. Nagasekhar, T.H. Yip, R.K. Guduru, K.S. Ramakanth, "Multipass equal channel angular extrusion of MgB2 powder in tubes", Physica C: Superconductivity, 2007. 466(1-2): p. 174-180.
[14]A.V. Nagasekhar, T.H. Yip, K.S. Ramakanth, "Mechanics of single pass equal channel angular extrusion of powder in tubes", Applied Physics A, 2006. 85(2): p. 185-194.
[15]陳振華,镁合金,化學工業出版社(第一版),2004。
[16]許智為,等徑轉角擠製(ECAE)對AZ61添加不同強化相鎂基複合材料之機械性質研究,國立台灣科技大學機械工程系碩士論文,2014。
[17]C. Blawert, N. Hort, K.U. Kainer, "Automotive applications of magnesium and its alloys", Trans. Indian Inst. Met, 2004. 57(4): p. 397-408.
[18]經濟部工業局,鎂合金成型產業資源化應用技術手冊,2006。
[19]K.U. Kainer, "Magnesium Alloys and Technology", WILEY-VCH Verlag GmbH & Co. KG aA, 2003.
[20]師昌緒,柯俊,R.W. Cahn著,丁道云等譯,非鐵合金的結構與性能(第八卷),科學出版社,1999。
[21]C.L. De Castro, B.S. Mitchell, "Nanoparticles from Mechanical Attrition", Ch. 1, in: M.-I. Baraton (Ed.), Synthesis, Functionalization and Surface Treatment of Nanoparticles, American Scientific Publishers, 2002. p.1-15.
[22]V.P. Balema, "Mechanical Processing in Hydrogen Storage Research and Development", Sigma-Aldrich, 2009. 2: p. 1-7.
[23]L. Lu, M.O. Lai, "Mechanical Alloying", Kluwer Academic Publisher, 1998.
[24]C. Suryanarayana, "Mechanical alloying and milling", Progress in Materials Science, 2001. 46: p. 1-184.
[25]D.L. Zhang, "Processing of advanced materials using high-energy mechanical milling", Progress in Materials Science, 2004. 49(3-4): p. 537-560.
[26]C. Suryanarayanaa, E. Ivanovb, V.V. Boldyrev, "The science and technology of mechanical alloying", Materials Science and Engineering, 2001. A304-306: p. 151-158.
[27]陳振華,陳鼎,機械合金化與固液反應球磨,2006。
[28]K. Yamada, C.C. Koch, "The influence of mill energy and temperature on the structure of the TiNi intermetallic after mechanical attrition", Journal of Materials Research, 1993. 8(06): p. 1317-1326.
[29]http://zzchangli.en.alibaba.com/product/1759769566210308309/ball_nose_end_mill_for_wood_grate_discharge_ball_mill_vibrating_ball_mill.html.
[30]C. Kursun, M. Gogebakan, "Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying", Journal of Alloys and Compounds, 2015. 619: p. 138-144.
[31]H.G. Faranak, M. Pourabdoli, S. Raygan, "Effect of process control agents on synthesizing nano-structured 2Mg–9Ni–Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2", Advanced Powder Technology, 2015. 26(2): p. 448-453.
[32]Y.F. Zhang, L. Lu, S.M. Yap, "Prediction of the amount of PCA for mechanical milling", Materials Processing Technology, 1999. 89-90: p. 260-265.
[33]P. Kuziora, M. Wyszynska, M. Polanski, J. Bystrzycki, "Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process", International Journal of Hydrogen Energy, 2014. 39(18): p. 9883-9887.
[34]V.M. Segal, Materials processing by simple shear. Materials Science and Engineering: A, 1995. A179: p. 157-164.
[35]http://www.foundationcoalition.org/resources/nano/2005-Mar 22_ECAE_Lecture_2.pdf.
[36]Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, "Principle of equal-channel angular pressing for the processing of ultra-fine grained materials", Scripta Materialia, 1995. 35: p. 143-146.
[37]R.Z. Valiev, T.G. Langdon, "Principles of equal-channel angular pressing as a processing tool for grain refinement", Progress in Materials Science, 2006. 51(7): p. 881-981.
[38]M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, "The shearing characteristics associated with equal-channel angular pressing", Materials Science and Engineering: A, 1998. A257: p. 328-332.
[39]Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, "The process of grain refinement in equal-channel angular pressing", Acta Materialia, 1997. 43: p. 3317-3331.
[40]O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, "ECAE consolidation of amorphous aluminum alloy powders", International Symposium on Processing and Fabrication of Advanced Materials XII, T.S. Srivatsan and R.A. Varin (Eds.) ASM International, Materials Park, OH, 2004, p. 346-357. .
[41]R. Derakhshandeh. H, A. Jenabali Jahromi, "An investigation on the capability of equal channel angular pressing for consolidation of aluminum and aluminum composite powder", Materials & Design, 2011. 32(6): p. 3377-3388.
[42]K. Matsuki, T. Aida, T. Takeuchi, J. Kusui, K. Yokoe, "Microstructural characteristics and superplastic-like behavior in aluminum powder alloy consolidated by equal -channel angular pressing", Acta Materialia, 2000. 48: p. 2625-2632.
[43]李萍,黃科帥,薛克敏,周明智,韓國民,純鋁粉末多孔燒結材料等通道轉角擠壓,中國有色金屬學報,2009,19(5): p. 881-886。
[44]J. Robertson, J.-T. Im, I. Karaman, K.T. Hartwig, I.E. Anderson, "Consolidation of amorphous copper based powder by equal channel angular extrusion", Journal of Non-Crystalline Solids, 2003. 317(1-2): p. 144-151.
[45]王曉溪,薛克敏,李萍,張翔,王成,純銅粉末包套-等徑轉角擠壓工藝實驗研究,武漢科技大學學報,2011,34(4): p. 253-257。
[46]G. Cakmak, T. Ozturk, "ECAP processing and mechanical milling of Mg and Mg–Ti powders: a comparative study", Journal of Materials Science, 2011. 46(16): p. 5559-5567.
[47]L.C. Zhang, J. Xu, E. Ma, "Consolidation and properties of ball-milled Ti50Cu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion", Materials Science and Engineering: A, 2006. 434(1-2): p. 280-288.
[48]H.P. Ng, C. Haase, R. Lapovok, Y. Estrin, "Improving sinterability of Ti–6Al–4V from blended elemental powders through equal channel angular pressing", Materials Science and Engineering: A, 2013. 565: p. 396-404.
[49]L. Li, M.O. Lai, M. Gupta, B.W. Chua, A. Osman, "Improvement of microstructure and mechanical properties of AZ91/SiC composite by mechanical alloying", Journal of materials science, 2000. 35: p. 5553-5561.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top