[1]王傳輝,《台灣地區鋼筋混凝土橋中性化效應之耐久性評估》,碩士論文,國立台北科技大學土木與防災研究所,2005。[2]Min-Yuan Cheng, Doddy Prayogo, Yu-Wei Wu (in preparation). Predicting the Pavement Rutting Behavior of Asphalt Mixtures Using Symbiotic Organisms Search - Least Squares Support Vector Machine Inference Model. Construction and Building Materials.
[3]李永豐,《RC結構物檢測方法與技術-非破壞檢測》,台大營建知識網,2006。
[4]陳桂清、柯正龍、張道光、饒正、羅建明、林玲換,《現有結構物安全評估及維護研究》,交通部運輸研究所,2002。
[5]陳宗源,《損傷鋼筋混凝土結構非破壞檢測與初步修復補強之探討-以公共圖書館為例》,碩士論文,中華大學土木與工程資訊學系,2008。[6]沈永年、林彥余,《混凝土版抗壓強度與反彈錘數之關係研究》,高雄應用科技大學學報,第37期,第311-322頁,2008。[7]林賢正,《鋼筋混凝土腐蝕行為探討》,碩士論文,國立海洋大學,2003。[8]涂豐鈞,《考慮劣化與震損影響之RC校舍耐震能力評估研究》,碩士論文,國立台灣科技大學營建工程系,2012。[9]黃世建、鍾立來、簡文郁、葉勇凱等,《全國中小學校舍耐震評估與補強施行計畫》,國家地震工程研究中心,2005。
[10]林炳昌,《校舍結構耐震詳細評估及補強設計審查要項》,中華民國結構工程學會,27卷1期,第81-94頁,2012。[11]蘇耕立,《台灣中小學校舍結構耐震能力初步評估方法之探討》,碩士論文,國立台灣大學土木工程系,2008。[12]蔡忠憲,《基於資料探勘技術之校舍補強經費與耐震補強結果預測模型》,碩士論文,國立台灣科技大學營建工程系,2013。[13]許丁友、鍾立來、廖文義、邱建國、簡文郁、周德光,《國民中小學典型校舍耐震能力初步評估法》,國家地震工程研究中心,2003。
[14]校舍耐震資訊網,《縣(市)政府委託辦理校舍耐震能力「詳細評估」勞務採購契約範本》,http://school.ncree.org.tw/,2010。
[15]Ko, C. H.(1999), “Computer aided decision support system for disaster prevention of hillside residents”, MS thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
[16]Fukahori, K. and Kubota, Y. (2000),”Consistency evaluation of landscape design by a decision support system”, Computer-Aided Civil and Infrastructure Engineering, No.15(5), pp.342-354.
[17]Sundin, S., and Braban-Ledoux, C. (2001), “Artificial intelligence-based decision support technologies in pavement management”, Computer-Aided Civil and Infrastructure Engineering, No.16(2), pp.143-157.
[18]M.-Y. Cheng, Y.-W. Wu (2009), “Evolutionary support vector machine inference system for construction management”, Automation in Construction, No.18, pp. 597-604.
[19]M.-Y. Cheng, P.M. Firdausi, D. Prayogo (2014), “High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT)”, Engineering Applications of Artificial Intelligence, No.29, pp.104-113.
[20]M.-Y. Cheng, M.-T. Cao (2014), “Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams”, Engineering Applications of Artificial Intelligence, No.28, pp. 86-96.
[21]M.-Y. Cheng, D.K. Wibowo, D. Prayogo, A.F.V. Roy (2015), “Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model”, Journal of Civil Engineering and Management, No.21, pp.881-892.
[22]M.-Y. Cheng, N.-D. Hoang, Y.-W. Wu (2013), “Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study”, Automation in Construction, No.35, pp.306-313.
[23]M.-Y. Cheng, A.F.V. Roy (2011), “Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines”, International Journal of Project Management, No.29, pp.56-65.
[24]D. Prayogo (2012), “A Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete”, MS thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
[25]M.-Y. Cheng, D. Prayogo, Y.-W. Wu (2013), “Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete Mixture”, Journal of Computing in Civil Engineering, 06014003.
[26]楊智民、劉廣利,《不確定性支持向量機原理及應用》,科學出版社,中國,2006。
[27]Min-Yuan Cheng, Nhat-Duc Hoang (2012), “Evolutionary Least Squares Support Vector Machine – Userguide, Technical Report”, CIC Lab, National Taiwan University of Science and Technology, Taipei, Taiwan.
[28]許淑婷,《利用快速混雜基因演算法與模擬機制建立設計專案作業程序最佳化之研究》,碩士論文,國立成功大學,2006。[29]吳育偉、鄭明淵,《支持向量機最佳化模式-應用於營建管理決策》,第11屆營建工程與管理學術研討會,2007。
[30]Storn, R. and K. Storn, and J.A. Lampinen (2005), “Differential Evolution A Practical Approach to Global Optimization”. Springer-Verlag.
[31]Nhat-Duc Hoang (2012).“Decision Support System for Construction Management Based on Evolutionary Least Squares Support Vector Machine”, MS thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
[32]M.-Y. Cheng, D. Prayogo (2014), “Symbiotic Organisms Search: A new metaheuristic optimization algorithm”, Computers & Structures, No.139, pp.98-112.
[33]D. Prayogo(2015), “An Innovative Parameter-Free Symbiotic Organisms Search (SOS) for Solving Construction-Engineering Problems”, MS thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taiwan.
[34]張家榮,《以距離與余嫌夾角為基礎之創新群集方法研究》,碩士論文,國立台灣科技大學營建工程系,2014。[35]林彥余,《混凝土抗壓強度與超音波速及反彈數關係之研究》,碩士論文,國立高雄應用科技大學土木工程與防災科技研究所,2007。[36]魏士翔,《ANIFIS應用於混凝土抗壓強度預測模式》,碩士論文,國立高雄應用科技大學土木工程與防災科技研究所,2012。[37]譚克平,《極端值判斷方法簡介》,台東大學教育學報,第十九卷第一期,第131-150頁,2008。
[38]J.I. Maletic,and A. Marcus(2010), ”Data Cleansing:A Prelude to Knowledge Discovery, Data Mining and Knowledge Discovery Handbook”, O. Maimon, and L. Rokach, eds., Springer US, pp.19-32.
[39]Yeh, I. C., Lien, C. H., Peng, C. H., & Lien, L. C. (2010), “Modeling Concrete Strength Using Genetic Operation Trees”, International Conference on Machine Learning and Cybernetics, Qingdao: IEEE.
[40]C.D. Lewis(1982), “Industrial and Business Forecasting Method”, London: Butterworth-Heinemann.
[41]M.-Y. Cheng, L.-C. Lien, (2012), Hybrid Artificial Intelligence–Based PBA for Benchmark Functions and Facility Layout Design Optimization, Journal of Computing in Civil Engineering 26 (5): 612-624.
[42]M.-Y. Cheng, D. Prayogo, Y.-W. Wu, M.M. Lukito, 2016, A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure, Automation in Construction 69: 21-33.
[43]M.-Y. Cheng, D. Prayogo, 2016, A novel fuzzy adaptive teaching–learning-based optimization (FATLBO) for solving structural optimization problems, Engineering with Computers: 1-15.
[44]Lewis, C. D., 1982, International and Business Forecasting Methods. London: Butterwo.
[45]G.G. Tejani, V.J. Savsani, Patel V. K., 2016, Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. Journal of Computational Design and Engineering.
[46]M.-Y. Cheng, D. Prayogo, D.-H. Tran, 2015, Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search. Journal of Computing in Civil Engineering: 04015036.
[47]D.-H. Tran, M.-Y. Cheng, D. Prayogo, 2016, A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time–cost–labor utilization tradeoff problem. Knowledge-Based Systems, 94: 132-145.
[48]M.-Y. Cheng, C.-K. Chiu, Y.-F. Chiu, Y.-W. Wu, Z.-L. Syu, D. Prayogo, C.-H. Lin, 2014, SOS optimization model for bridge life cycle risk evaluation and maintenance strategies. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 26(4): 293-308.
[49]S. Duman, 2016, Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones. Neural Computing and Applications: 1-15.
[50]H. Kamankesh, V.G. Agelidis, A. Kavousi-Fard, 2016, Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand. Energy, 100: 285-297.
[51]E. Ruskartina, V.F. Yu, B. Santosa, A.A.N.P. Redi, 2015, Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 101: 857-861.
[52]A. Panda, S. Pani, 2016, A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Applied Soft Computing, 46: 344-360.