|
Akhtar, M. J. and I. B. Utne (2014). "Human fatigue’s effect on the risk of maritime groundings – A Bayesian Network modeling approach." Safety Science 62(0): 427-440. Alkasseh, J. A., M. Adlan, I. Abustan, H. Aziz and A. Hanif (2013). "Applying Minimum Night Flow to Estimate Water Loss Using Statistical Modeling: A Case Study in Kinta Valley, Malaysia." Water Resources Management 27(5): 1439-1455. Araujo, L. S., H. Ramos and S. T. Coelho (2006). "Pressure Control for Leakage Minimisation in Water Distribution Systems Management." Water Resources Management 20(1): 133-149. Babbitt, H. E., F. C. Amsbary and D. R. Gwinn (1920). "THE DETECTION OF LEAKS IN UNDERGROUND PIPES [with DISCUSSION]." Journal (American Water Works Association) 7(4): 589-595. Barbieri, R., N. Barbieri and K. F. de Lima (2015). "Some applications of the PSO for optimization of acoustic filters." Applied Acoustics 89: 62-70. Besner, M.-C., M. Prévost and S. Regli (2011). "Assessing the public health risk of microbial intrusion events in distribution systems: Conceptual model, available data, and challenges." Water Research 45(3): 961-979. Blesa, J., F. Nejjari and R. Sarrate (2014). "Robustness Analysis of Sensor Placement for Leak Detection and Location under Uncertain Operating Conditions." Procedia Engineering 89(0): 1553-1560. Casillas, M., V. Puig, L. Garza-Castañón and A. Rosich (2013). "Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms." Sensors 13(11): 14984. Cataldo, A., G. Cannazza, E. D. Benedetto and N. Giaquinto (2012). "A TDR-based system for the localization of leaks in newly installed, underground pipes made of any material." Measurement Science and Technology 23(10): 105010. Colombo, A. F., P. Lee and B. W. Karney (2009). "A selective literature review of transient-based leak detection methods." Journal of Hydro-environment Research 2(4): 212-227. Cooper, G. F. and E. Herskovits (1992). "A Bayesian method for the induction of probabilistic networks from data." Machine Learning 9(4): 309-347. Covas, D. and H. Ramos (2010). "Case Studies of Leak Detection and Location in Water Pipe Systems by Inverse Transient Analysis." Journal of Water Resources Planning and Management 136(2): 248-257. Delgado-Galván, X., R. Pérez-García, J. Izquierdo and J. Mora-Rodríguez (2010). "An analytic hierarchy process for assessing externalities in water leakage management." Mathematical and Computer Modelling 52(7–8): 1194-1202. Demirci, S., E. Yigit, I. H. Eskidemir and C. Ozdemir (2012). "Ground penetrating radar imaging of water leaks from buried pipes based on back-projection method." NDT and E International 47: 35-42. Diamantidis, N. A., D. Karlis and E. A. Giakoumakis (2000). "Unsupervised stratification of cross-validation for accuracy estimation." Artificial Intelligence 116(1-2): 1-16. EC (2015). EU Reference document Good Practices on Leakage Management WFD CIS WG PoM, European Commission. EPA (2007). Leakage Management Technologies. U.S.A, Awwa Research Foundation. Farley, M. and S. Trow (2003). Losses in Water Distribution Networks: A Practitioner's Guide to Assessment, Monitoring and Control IWA publishing. Feelders, A. and L. C. van der Gaag (2006). "Learning Bayesian network parameters under order constraints." International Journal of Approximate Reasoning 42(1-2): 37-53. Fletcher, R. and M. Chandrasekaran (2008). SmartBall™: A New Approach in Pipeline Leak Detection. 2008 7th International Pipeline Conference. Calgary, Alberta, Canada. 2. Francis, R. A., S. D. Guikema and L. Henneman (2014). "Bayesian Belief Networks for predicting drinking water distribution system pipe breaks." Reliability Engineering & System Safety 130(0): 1-11. Friedman, N. (1998). The Bayesian structural EM algorithm. In UAI. Gámez, J., J. Mateo and J. Puerta (2011). "Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood." Data Mining and Knowledge Discovery 22(1): 106-148. Giustolisi, O., Z. Kapelan and D. Savic A Hydraulic Simulation Model for Pipe Networks with Leakage Outflows and Pressure-Driven Demands. World Environmental and Water Resources Congress 2007: 1-15. Goulet, J.-A., S. Coutu and I. F. C. Smith (2013). "Model falsification diagnosis and sensor placement for leak detection in pressurized pipe networks." Advanced Engineering Informatics 27(2): 261-269. Granian, H., S. H. Tabatabaei, H. H. Asadi and E. J. M. Carranza (2015). "Multivariate regression analysis of lithogeochemical data to model subsurface mineralization: a case study from the Sari Gunay epithermal gold deposit, NW Iran." Journal of Geochemical Exploration 148: 249-258. Haghighi, A. and H. M. Ramos (2012). "Detection of Leakage Freshwater and Friction Factor Calibration in Drinking Networks Using Central Force Optimization." Water Resources Management 26(8): 2347-2363. Heckerman, D. (2008). A Tutorial on Learning with Bayesian Networks: 33-82. Heckerman, D., D. Geiger and D. M. Chickering (1995). "Learning Bayesian networks: The combination of knowledge and statistical data." Machine Learning 20(3): 197-243. Henrion, M. (1987). Practical Issues in Constructing a Bayes' Belief Network. Proceedings of the Proceedings of the Third Conference Annual Conference on Uncertainty in Artificial Intelligence-UAI-87, New York, NY, Elsevier Science. Ho, C.-I., M.-D. Lin and S.-L. Lo (2010). "Use of a GIS-based hybrid artificial neural network to prioritize the order of pipe replacement in a water distribution network." Environmental Monitoring and Assessment 166(1-4): 177-189. Hunaidi, O., W. T. Chu, A. Wang and W. Guan (1999). Leak detection methods for plastic water distribution pipes AWWA research foundation and American Water Works Association. IWSA (1991). Statistics on impact factors of water leakage. IWA Statistics. London, UK: IWSA, International Water Service Association. Jasper, M. N., G. K. Mahinthakumar, S. R. Ranjithan and E. D. Brill (2013). A sensitivity analysis of data measurement types for leak detection in water distribution systems. World Environmental and Water Resources Congress 2013: Showcasing the Future, May 19, 2013 - May 23, 2013, Cincinnati, OH, United states, American Society of Civil Engineers (ASCE). Jin, Y., W. Yumei and L. Ping (2007). "The genetic-algorithm-enhanced blind system identification for water distribution pipeline leak detection." Measurement Science and Technology 18(7): 2178. Karimi-Nasab, M., M. Modarres and S. M. Seyedhoseini (2015). "A self-adaptive PSO for joint lot sizing and job shop scheduling with compressible process times." Applied Soft Computing 27(0): 137-147. Katayama, S. and S. Imori (2014). "Lasso penalized model selection criteria for high-dimensional multivariate linear regression analysis." Journal of Multivariate Analysis 132: 138-150. Kim, S. and H. Lee (2003). The Leak Detection Method Using GA and HS Algorithm. World Water & Environmental Resources Congress 2003: 1-10. Kuo, T. Y. (2014). Taipei water leak statistics. Taipei, Taiwan ROC, Taipei Water Company. Kwang, Y. L. and A. E.-S. Mohamed ( 2008). Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems, Wiley-IEEE Press. Lee, P. J., M. F. Lambert, A. R. Simpson, J. P. Vítkovsky and D. Misiunas (2007). "Leak location in single pipelines using transient reflections." Australian Journal of Water Resources 11(1): 53-65. Leray, P. and O. Francois (2005). Bayesian Network Structural Learning and Incomplete Data. Proceedings of the International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning (AKRR 2005). Espoo, Finland, 2a-ConfInt: 33-40. Liang, K.-Y., S. L. Zeger and B. Qaqish (1992). "Multivariate Regression Analyses for Categorical Data." Journal of the Royal Statistical Society. Series B (Methodological) 54(1): 3-40. Liang, W., J. Hu, L. Zhang, C. Guo and W. Lin (2012). "Assessing and classifying risk of pipeline third-party interference based on fault tree and SOM." Engineering Applications of Artificial Intelligence 25(3): 594-608. Liao, W. and Q. Ji (2009). "Learning Bayesian network parameters under incomplete data with domain knowledge." Pattern Recognition 42(11): 3046-3056. Lijuan, W., Z. Hongwei and N. Zhiguang (2012). Leakage Prediction Model Based on RBF Neural Network. Software Engineering and Knowledge Engineering: Theory and Practice. Y. Wu, Springer Berlin Heidelberg. 114: 451-458. Mahor, A. and S. Rangnekar (2012). "Short term generation scheduling of cascaded hydro electric system using novel self adaptive inertia weight PSO." International Journal of Electrical Power & Energy Systems 34(1): 1-9. Malm, A., F. Moberg, L. Rosén and T. J. R. Pettersson (2015). "Cost-Benefit Analysis and Uncertainty Analysis of Water Loss Reduction Measures: Case Study of the Gothenburg Drinking Water Distribution System." Water Resources Management 29(15): 5451-5468. Marsh, W. and G. Bearfield (2008). Representing Parameterised Fault Trees Using Bayesian Networks. Computer Safety, Reliability, and Security: 120-133. Montalvo, I., J. Izquierdo, R. Pérez-García and M. Herrera (2010). "Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems." Engineering Applications of Artificial Intelligence 23(5): 727-735. Morrison, J., S. Tooms and D. Rogers (2007). District metered areas guidance notes, International Water Association. version 1. Mulholland, M., A. Purdon, M. A. Latifi, C. Brouckaert and C. Buckley (2014). "Leak identification in a water distribution network using sparse flow measurements." Computers & Chemical Engineering(0). Murphy, K. (2001). "The Bayes Net Toolbox for MATLAB." Computing Science and Statistics 33. Nakhkash, M. and M. R. Mahmood-Zadeh (2004). Water leak detection using ground penetrating radar. Proceedings of the Tenth International Conference Ground Penetrating Radar, GPR 2004, June 21, 2004 - June 24, 2004, Delft, Netherlands, Institute of Electrical and Electronics Engineers Inc. Nixon, W., M. S. Ghidaoui and A. A. Kolyshkin (2006). Range of Validity of the Transient Damping Leakage Detection Method, ASCE. Nixon, W., M. S. Ghidaoui and A. A. Kolyshkin (2006). "Range of Validity of the Transient Damping Leakage Detection Method." Journal of Hydraulic Engineering 132(9): 944-957. Oliver, J. (1984). "RECENT DEVELOPMENTS IN LEAK NOISE CORRELATION TECHNIQUES." Water Services 88(1066): 512-513. Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference, Morgan Kaufmann Publishers Inc. Pérez, R., J. Blesa, J. Cugueró and R. Sarrate (2014). Network Monitoring: Sensor Placement, Mass Balance and Water Quality, Effinet. Pérez, R., V. Puig, J. Pascual, J. Quevedo, E. Landeros and A. Peralta (2011). "Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks." Control Engineering Practice 19(10): 1157-1167. Pilcher, R. (2003). "Leak detection practices and techniques: A practical approach." Water 21(DEC.): 44-45. Pudar, R. S. and J. A. Liggett (1992). "Leaks in Pipe Networks." Journal of Hydraulic Engineering 118(7): 1031-1046. Puust, R., Z. Kapelan, D. Savic and T. Koppel (2006). Probabilistic Leak Detection in Pipe Networks Using the SCEM-UA Algorithm. Water Distribution Systems Analysis Symposium 2006: 1-12. Puust, R., Z. Kapelan, D. A. Savic and T. Koppel (2010). "A review of methods for leakage management in pipe networks." Urban Water Journal 7(1): 25-45. Romano, N., G. D'Urso, G. Severino, G. B. Chirico, M. Palladino, B. Brunone, M. Ferrante, S. Meniconi and C. Massari (2013). "Four Decades of Progress in Monitoring and Modeling of Processes in the Soil-Plant-Atmosphere System: Applications and ChallengesEffectiveness Assessment of Pipe Systems by Means of Transient Test-based Techniques." Procedia Environmental Sciences 19: 814-822. Rosich, A., R. Sarrate and F. Nejjari (2012). "Optimal Sensor Placement for Leakage Detection and Isolation in Water Distribution Networks*." IFAC Proceedings Volumes 45(20): 776-781. Rossman, L. A. (2000). EPANET 2 user's manual. National Risk Management Research Laboratory, USEPA, Cincinnati,OH. Sarrate, R., J. Blesa and F. Nejjari (2014). Clustering techniques applied to sensor placement for leak detection and location in water distribution networks. Control and Automation (MED), 2014 22nd Mediterranean Conference of. Stephens, M., M. Lambert, A. Simpson, J. Vítkovský and J. Nixon Field Tests for Leakage, Air Pocket, and Discrete Blockage Detection Using Inverse Transient Analysis in Water Distribution Pipes. Critical Transitions in Water and Environmental Resources Management: 1-10. Tungadio, D. H., B. P. Numbi, M. W. Siti and A. A. Jimoh (2015). "Particle swarm optimization for power system state estimation." Neurocomputing 148: 175-180. TWC (2011). Taiwan water corporation report. Wai, L. (1998). "Bayesian network refinement via machine learning approach." Pattern Analysis and Machine Intelligence, IEEE Transactions on 20(3): 240-251. Weber, P., G. Medina-Oliva, C. Simon and B. Iung (2012). "Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas." Engineering Applications of Artificial Intelligence(0). Wu, Z., P. Sage and D. Turtle (2010). "Pressure-Dependent Leak Detection Model and Its Application to a District Water System." Journal of Water Resources Planning and Management 136(1): 116-128. Yang, I. T. and Y.-H. Hsieh (2011). "Reliability-based design optimization with discrete design variables and non-smooth performance functions: AB-PSO algorithm." Automation in Construction 20(5): 610-619.
|