跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 09:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Wang Jia Quan
研究生(外文):Hairus Abdullah
論文名稱:Sulfide-based Nano heterostructures for Efficient Photocatalyst
論文名稱(外文):Sulfide-based Nano heterostructures for Efficient Photocatalyst
指導教授:郭東昊
指導教授(外文):Prof. Dong-Hau Kuo
口試委員:郭東昊
口試委員(外文):Prof. Dong-Hau Kuo
口試日期:2016-05-06
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:165
外文關鍵詞:CuBiS2(AgIn)xZn(2x-1)S2nano compositesolid solutionphotocatalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
Photocatalysis is one of the prospective techniques to overcome the energy shortage problem and global warming. It has been used widely in many applications such as elimination of gaseous and water pollutants, self-cleaning, antibacterial materials, and water splitting. However, work on enhancing the capability of photocatalysis is ongoing because photocatalysts with high activity and reactive selectivity are required for applications. Some limitations of photocatalyst to obtain high efficiency have been found due to the fast recombination rate of photo carriers. To overcome the limitation, some strategies such as coupling two semiconductors or depositing metal on surface of semiconductors with suitable band edge position can reduce the recombination phenomena. To draw new prospects in this field, metal/p-n nanoheterojunction photocatalyst (Ag-deposited p-type CuBiS2/n-type TiO2 nano composite) and p-n heterojunction between n-type solid solution and p-type semiconductors ((AgIn)xZn2(1-x)S2/Ag2S nanorods) have been successfully synthesized by solution based processes. Their morphologies, structures, and textures were carefully characterized by scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), X-ray diffractometry (XRD). On the other hand, the suitable combination of Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectra (DRS), UV-vis spectrophotometry, X-ray photoelectron spectroscopy (XPS), thermogravimetry analysis (TGA) and Hall measurement were used to characterize and analyze performances of as-designed photocatalyst systems.
There are three parts in this work. The first part deals about the growing of CuBiS2 nanoparticles and thin TiO2 layer on SiO2 sphere to form nano p-n heterojunction and the depositing Ag on its surfaces as electron trapping to reduce the recombination rate between photo carriers. This work is the first report of CuBiS2 semiconductor nanoparticles used as a material for photodegradation. The data showed that the SiO2/TiO2/CuBiS2/Ag composite particles completely degraded 50 mL of 10 ppm AB 1 dye solution in only 5 min under UV light irradiation and 100 mL of 5 ppm AB 1 dye solution in 30 min under visible light irradiation. The good photocatalysis of the composite spheres is attributed to the establishment of a good p−n heterojunction interface between the p-type CuBiS2 and n-type TiO2 semiconductors with the assistance of Ag nanoparticles.
In the second part, the as-prepared photocatalyst of SiO2/TiO2/CuBiS2/Ag composite particles was embedded into thin nylon film to improve its recyclability and to solve the post treatment problems which need high cost and time in the processes. The post treatment is the process of refreshing photocatalyst after being used for removing pollutants. The embedded photocatalyst in thin nylon film (hybrid composite film) was stable and reusable without any post treatment process between the photocatalytic degradation sessions.
The third part of this work was dealing with the heavy metal pollutant such as hexavalent chromium (Cr(VI)) by photocatalytic reduction to precipitate Cr(VI) as Cr(OH)3 with lower toxicity. In the third part, the concepts of p-n heterojunction and solid solution were simultaneously used to utilize high bandgap material such as ZnS and suppress the recombination rate of photo carriers. The photocatalyst was designed by doping Ag and In into ZnS lattice and followed by coupling with p-type Ag2S semiconductor to form Ag2S nanoparticle-decorated (AgIn)xZn2(1-x)S2 nanorod photocatalyst. The results showed only 20 mg of the as-prepared nanocomposites could reduce 100 mL of 10 ppm potassium dichromate by almost 100% in less than 90 min without adding any hole scavenger agents and pH adjustment (pH = 7). The good photocatalytic reduction was related to the narrower bandgap of (AgIn)xZn2(1−x)S2 solid solution because of the hybridized orbitals of Ag, In, Zn, and S and low recombination rate of photogenerated electron and hole pairs due to the effectiveness of p-type Ag2S and n-type (AgIn)xZn2(1−x)S2 nanoheterojunctions. This work not only gives a contribution to the creation of visible light photocatalysis for wide-bandgap semiconductors, but also extends our technological viewpoints in designing highly efficient metal sulfide photocatalyst.
Table of Contents
Acknowledgements………………………………………………………………………..…I
Abstract……………………………………………………………………………................II
Table of Contents…………………………………………………………………………....IV
List of Figures………………………………………………………………………………VIII
List of Tables…………………………………………………………………………….…XIV
List of Equations……………………………………………………………………..…….XV
Appendix…………………………………………………………………………………...XXI
1. Introduction………………………………………………………………………………1
1.1 Background of the study……………………………………………..………………..1
1.2 Wastewater treatment…………………………………………………...……………..3
1.2.1 Conventional wastewater treatment…………………………………………...3
1.2.2 Photochemical advanced oxidation processes (AOPs)………………………..4
1.2.3 Semiconductor photocatalysis……………………………………...............….5
1.2.4 Oxidizing species generation…………………………………..............….…...6
1.3 Hydrogen production……………………………………………………………...…...8
1.3.1 Photocatalytic water splitting…………………………………….................….8
1.3.2 Basic principle of photocatalytic hydrogen generation…………….………….9
1.4 Research objectives………………………………………………………………..…11
2. Basic theory and literature review……………………………………………………..12
2.1 Semiconductor nanoparticles………………………………………………………...12
2.2 Metal sulfide semiconductor…………………………………………………………12
2.3 Approaches for efficient photocarrier separation…………………………………….14
2.3.1 Coupled semiconductor………………...…………………………………….14
2.3.2 Metal/semiconductor nano heterostructure…………………………………..17
2.3.3 Hole and electron scavenging……………………………….………………..18
2.3.4 Photo carrier trapping………………………………………………………...18
2.4 Band bending…………………………………………………………………………18
2.4.1 Band bending at metal/semiconductor interfaces…………………………….19
2.4.2 Band bending at p-n heterostructure…………………………………….…....20
2.4.3 Band bending at electrolyte/semiconductor interfaces…………………….…21
2.5 Literature review……………………………………………………………………..23
2.5.1 p-n heterostructure based nano composite…………………………................23
2.5.1.1 p-type CaFe2O4/n-type AgVO4 nano composite…………..………….…..23
2.5.1.2 TiO2/Cu2O/reduced graphene oxide (RGO)…………………................…25
2.5.1.3 Cu2O nanoparticles decorated BiVO4 nano composite……………….…..27
2.5.1.4 p-type BiOI/ n-type porous graphite-like C3N4 (p-g-C3N4)………….…...29
2.5.1.5 Ag2O/Bi2O2CO3 p-n heterojunction photocatalyst………………….……31
2.5.1.6 p-BiOI/n-TiO2 nanofibers…………………………...……………….……32
2.5.1.7 BiPO4/Bi2S3 heterojunction photocatalyst……………………………......35
2.5.1.8 Bi2O3/SrFe12O19 magnetic photocatalyst……………………………....….37
2.5.1.9 Ag2O/TiO2 nano composite photocatalyst………………….…………….39
2.5.1.10 Nanocubic p-Cu2O/n-ZnO photocatalyst…………………………....…..42
2.5.2 Sulfide based photocatalyst…………………………………………….……..45
2.5.2.1 TiO2 Layer Coated-CdS Spheres Core−Shell Nanocomposite....................45
2.5.2.2 Cu2S-incorporated ZnS nanocomposites…………………………….……47
2.5.2.3 Sb2S3 photocatalyst…………………………………………………..…....49
2.5.2.4 ZnO/ZnS/CdS/CuInS2 core−shell nanowire arrays…………………….…51
2.5.2.5 CdS–AgGaS2 photocatalytic diodes…………………………….................52
2.5.2.6 CdS–Titanate nanodisk–Ni multi component photocatalyst………….…..54
2.5.2.7 Pt-tipped CdS nano rod/CdSe nano heterostructured photocatalyst............56
2.5.2.8 ZnO/Pt/Cd0.8Zn0.2S nano heterostructured photocatalyst…….….………..57
2.5.2.9 TiO2-Pt nano-wire photocatalyst………………………………...……..….58
2.5.2.10 CdS-cluster-decorated graphene nano sheets…………………….....……59
2.5.3 Polymer supported photocatalyst for environmental remediation………..…...61
2.5.4 Solid solution based photocatalyst……………………….…………….……...63
2.5.4.1 (AgIn)xZn2(1-x)S2-Pt photocatalyst………………………….…….………..63
2.5.4.2 AgInZn7S9 photocatalyst………………………………….…….………....65
2.5.4.3 Novel stannite-type complex sulfide photocatalyst AI2-Zn-AIV-S4 (AI= Cu and Ag; AIV= Sn and Ge)……………………………………………..…...66
2.5.4.4 (Ga1-xZnx)(N1-xOx) solid solution photocatalyst……………………….….68
2.5.4.5 Band gap modification of ZnO and ZnS through solid solution formation…………………………………………………….................….69
2.5.4.6 Zn(O,S) solid solution photocatalyst…………………………….………..70
2.5.4.7 Strong Valence-Band Offset Bowing of ZnO1-xSx…………….…………..72
3. Experimental procedures…………………………………………………………….….74
3.1 Synthesis of nano photocatalyst…………………………………………………..…...74
3.1.1 Preparation of Ag and CuBiS2 Nanoparticle-Coated SiO2@TiO2 Composite Sphere (SiO2/TiO2/CuBiS2/Ag)………………………………………....….….74
3.1.1.1 Synthesis of SiO2 sphere particles……………………………….…….…..74
3.1.1.2 TiO2 coating on SiO2 sphere particles……………………………….….….74
3.1.1.3 Synthesis of SiO2/TiO2/CuBiS2………………………………………..…..74
3.1.1.4 Depositing Ag nanoparticles on SiO2/TiO2/CuBiS2……………..................75
3.1.2 Preparation of thin nylon film-supported p-CuBiS2/n-TiO2 heterojunction-based nano composites………………………………………..…………..….….....…75
3.1.3 Preparation of n-type (AgIn)xZn2(1−x)S2/p-type Ag2S nanocomposite….….…..76
3.1.3.1 Preparation of (AgIn)xZn2(1−x)S2 nanorods…………...…………….…..…..77
3.1.3.2 Preparation of (AgIn)xZn2(1-x)S2/Ag2S nano composites……………..….....77
3.2 Characterization methods…………………………………………….………….…..…78
3.2.1 X-ray diffractometry (XRD)……………………………………………………78
3.2.2 Scanning electron microscopy (SEM)……………………………………..…..78
3.2.3 High resolution transmission electron microscopy (HRTEM)……………..….79
3.2.4 Diffuse reflectance spectroscopy (DRS)…………………………….................80
3.2.5 X-ray photoelectron spectroscopy (XPS)………………………………..…….82
3.2.6 Fourier transform infrared spectroscopy (FTIR)…………………….................83
3.2.7 Thermogravimetric analysis (TGA)………………………………………...….85
3.2.8 Hall measurement………………………………………………………......….86
4. Results and discussion……………………..………………………………………..……88
4.1 Photocatalytic performance of Ag and CuBiS2 nanoparticle-coated SiO2@TiO2 composite sphere under visible and ultraviolet light irradiation for azo dye degradation with the assistance of numerous nano p−n diodes……………………………..……...88
4.1.1 Experimental approach…………………………...………………..…………..89
4.1.2 Results and discussion………………………………………………..………..90
4.1.3 Summary……………………………………………………………................105
4.2 Recyclability of thin nylon film-supported p-CuBiS2/n-TiO2 heterojunction-based nano composites for visible light photocatalytic degradation of organic dye..………….…106
4.2.1 Experimental approach…………………………...………………………..….107
4.2.2 Results and discussion…………………………………………………..…….107
4.2.3 Summary…………………………………………………………………..…..113
4.3 Facile Synthesis of n-type (AgIn)xZn2(1−x)S2/p-type Ag2S nano composite for visible light photocatalytic reduction To detoxify hexavalent chromium……………..……...114
4.3.1 Experimental approach…………………………...……………………..…….117
4.3.2 Results and discussion…………………………………………………..…….118
4.3.3 Summary………………………………………………………………..……..136
4.5 General summary………………………………………………………………….....137
5. Conclusions……………………………………………………………………………....139
References…………………………………………………………………………………...141
Appendix………………………………………………………………………………….…163
Publications……………………………………………………………………….................165
[1]A. Gore, Respect the land, our precious plant, Time Magazine, 150(17A) (1997) 8–9.
[2]J. Blanco, S. Malato, P. Ferna´ndez-Iban˜ez, D. Alarco´n, W. Gernjak, M.I. Maldonado, Review of feasible solar energy applications to water processes, Renew. Sust. Energ. Rev., 13 (2009) 1437–1445.
[3]L. West, World Water Day: A billion people worldwide lack safe drinking water, About.com (Accessed : 2016-03-20).
[4]Diseases caused by water pollution, New Health Advisor, 2016. (Available from http://www.newhealthadvisor.com/Diseases-Caused-By-Water-Pollution.html)
[5]Human development report 2006, Beyond scarcity: power, poverty and the global water crisis, United Nations Development Programme (UNDP), New York: Palgrave Macmillan (2006). ISBN 0-230-50058-7.
[6]X.J. Zhang, C. Chen, P.F. Lin, A.X. Hou, Z.B. Niu, J. Wang, Emergency drinking water treatment during source water pollution accidents in China: Origin analysis, framework and technologies, Environ. Sci. Technol. 45(1) (2011) 161–167.
[7]J.H. Duffus, Heavy metals-a meaningless term? Pure Appl. Chem. 74 (2002) 793−807.
[8]G. Aragay, J. Pons, A. Merkoci, Recent trends in macro-, micro-, ̧ and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111 (2011) 3433−3458.
[9]Lenntech water treatment and air purification, Lenntech, Rotterdamseweg, Netherlands, (2004). (available from www.excelwater.com/thp/filters/Water-Purification.htm)
[10]R. Swenson, The production peaks in petroleum and natural gas: information, misinformation, awareness, and implications. In: Proceedings of the ISES 2005 solar world congress (2005).
[11]United nations and world energy council. World energy assessment: energy and the challenge of sustainability. Washington, DC, USA: Communications Development Inc. (2000).
[12]J. Goldemberg, T.B, Johansson, World energy assessment overview, United Nations and World Energy Council (2004).
[13]A. Wokaun, B. Kyoto, The risks and how to cope. UN framework convention on climate change. Bonn, Germany, Paul Scherrer Institut (2004).
[14]A. Kachina, E. Puzenat, S. Ould-Chikh, C. Geantet, P. Delichere, P.A. Afanasiev, New approach to the preparation of nitrogen- doped titania visible light photocatalyst. Chem. Mater. 24 (2012) 636−642.
[15]H. Li, S. Yin, Y. Wang, T. Sato, Persistent fluorescence-assisted TiO2−xNx-based photocatalyst for gaseous acetaldehyde degradation. Environ. Sci. Technol. 46 (2012) 7741−7745.
[16]J. Feng, T. Tsuzuki, B. Tang, X. Hou, L. Sun, X. Wang, Reduced graphene oxide/ZnO composite: Reusable Adsorbent for Pollutant Management. ACS. Appl. Mater. Interfaces 4 (2012) 3084−3090.
[17]T.E Agustinaet, H.M. Ang, V.K.A Vareek, A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J. Photochem. Photobiol. C 6 (2005) 264−273.
[18]S. Afzal, W.A. Daoud, S.J. Langford, Photostable self-cleaning cotton by copper porphyrin/TiO2 visible light photocatalytic system, ACS. Appl. Mater. Interfaces 5 (2013) 4753−4759.
[19]K.I. Katsumata, S. Okazaki, C.E.J. Cordoner, T. Shichi, T. Sasaki, A. Fujishima, Preparation and characterization of self- cleaning glass for vehicle with niobia nanosheets. ACS Appl. Mater. Interfaces 2 (2010) 1236−1241.
[20]R. Kumar, S. Anandan, K. Hembram, T.N. Rao, Efficient ZnO based visible-light-driven photocatalyst for antibacterial applications. ACS. Appl. Mater. Interfaces 6 (2014) 13138−13148.
[21]D.M. Tobaldi, C. Piccirillo, R.C. Pullar, A.F. Gualtieri, M.P. Seabra, P.M.L. Castro, J.A. Labrincha, Silver-modified nano-titania as an antibacterial agent and photocatalyst. J. Phys.Chem. C 118 (2014) 4751−4766.
[22]M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev. 11 (2007) 401−4.
[23]S.A. Kalogirou, Seawater desalination using renewable energy sources, Prog. Energy Combust. Sci. 31 (2005) 242‒281.
[24]W. Glaze, J.W. Kang, D.H. Chapin, The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Ozone: Science & Engineering: The Journal of the International Ozone Association 9(4) (1987) 335–352.
[25]J.H. Oliver, K. Hyunook, C.P. Chi, Crit. Rev. Environ. Sci. Technol. 30 (2000) 499.
[26]O. Legrini, E. Oliveros, A.M. Braun, Photochemical processes for water treatment, Chem. Rev. 93 (1993) 671‒698.
[27]M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341-357.
[28]R.M. Navarro Yerga, M. Consuelo Avarez Galvan, F. del Valle, A. Jos, V. de la Mano, J.L.G. Fierro, Water splitting on semiconductor catalysts under visible-light irradiation, Chem. Sus. Chem. 2 (2009) 471‒485.
[29]J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today 53 (1999) 115.
[30]S.C. Turchi, D.F.J. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack, J. Catal. 122 (1990) 178.
[31]M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res. 44 (2010) 2997.
[32]J.D. Sutter, J. Berlinger, Final draft of climate deal formally accepted in Paris, CNN. Cable News Network, Turner Broadcasting System, Inc. 2015.
[33]W. Fan, Q. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion, Phys. Chem. Chem. Phys. 5 (2013) 2632‒2649.
[34]N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 15729‒15735.
[35]X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev. 110 (2010) 6503–6570.
[36]M.R. Gholipour, C.T. Dinh, F. Béland, T.O. Do, Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting, Nanoscale 7 (2015) 8187‒8508.
[37]L. Amirav, A.P. Alivisatos, Photocatalytic hydrogen production with tunable nanorod heterostructures, J. Phys. Chem. Lett. 1 (2010) 1051–1054.
[38]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37‒38.
[39]S. Chen, W. Zhao, W. Liu, H. Zhang, X. Yu, Y. H. Chen, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation, J. Hazard. Mater. 172 (2009) 1415‒1423.
[40]R. Bajaj, M. Sharma, D. Bahadur, Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye, Dalton Trans. 42 (2013) 6736‒6744.
[41]J. Yan, L. Zhang, H. Yang, Y. Tang, Z. Lu, S. Guo, Y. Dai, Y. Han, M. Yao, CuCr2O4/TiO2 heterojunction for photocatalytic H2 evolution under simulated sunlight irradiation, Sol. Energy 83 (2009) 1534.
[42]R. Nakamura, T. Tanaka, Y. Nakato, Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes, J. Phys. Chem. B 108 (2004) 10617‒10620.
[43]M. Mrowetz, W. Balcerski, A.J. Colussi, M.R. Hoffmann, Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination, J. Phys. Chem. B 108 (2004) 17269‒17273.
[44]Q. Li, Y.W. Li, P. Wu, R. Xie, J.K. Shang, Palladium oxide nanoparticles on nitrogen-doped titanium oxide: accelerated photocatalytic disinfection and post-illumination catalytic “Memory”, Adv. Mater. 20 (2008) 3717‒3723.
[45]P.A.K. Reddy, P.V.L. Reddy, V.M. Sharma, B. Srinivas, V.D. Kumari, M. Subrahmanyam, Photocatalytic degradation of isoproturon pesticide on C, N and S doped TiO2, J. Water Resour. Prot. 2 (2010) 235‒244.
[46]J.C. Yu, G.S. Li, X. C. Wang, X.L. Hu, C. W. Leung, Z.D. Zhang, An ordered cubic Im3m mesoporous Cr–TiO2 visible light photocatalyst, Chem. Commun. (2006) 2717‒2719.
[47]G.S. Li, D.Q. Zhang, J.C. Yu, Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts, Chem. Commun. 11 (2009) 3775.
[48]M. Khatamian, M.S. Oskoui, M. Haghighi, M. Darbandi, Visible-light response photocatalytic water splitting over CdS/TiO2 and CdS–TiO2/metalosilicate composites. Int. J. Energy Res. 38 (2014) 1712‒1726.
[49]C.T. Dinh, M.H. Pham, Y. Seo, F. Kleitz, T.O. Do, Design of multicomponent photocatalysts for hydrogen production under visible light using water-soluble titanate nanodisks, Nanoscale, 6 (2014) 4819‒4829.
[50]J. Hou, C. Yang, H. Cheng, Z. Wang, S. Jiao, H. Zhu, Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production, Phys. Chem. Chem. Phys. 15 (2013) 15660‒15668.
[51]Y.X. Pan, H. Zhuang, J. Hong, Z. Fang, H. Liu, B. Liu, Y. Huang, R. Xu, Cadmium Sulfide Quantum Dots Supported on Gallium and Indium Oxide for Visible-Light-Driven Hydrogen Evolution from Water, Chem. Sus. Chem. 7 (2014) 2537‒2544.
[52]K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, J. Ye, MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation, ACS Nano 8 (2014) 7078‒7087.
[53]X. Wang, M. Liu, Q. Chen, K. Zhang, J. Chen, M. Wang, P. Guo, L. Guo, Synthesis of CdS/CNTs photocatalysts and study of hydrogen production by photocatalytic water splitting, Int. J. Hydrogen Energy 38 (2013) 13091‒13096.
[54]L. Wang, Z. Yao, F. Jia, B. Chen, Z. Jiang, A facile synthesis of ZnxCd1−xS/CNTs nanocomposite photocatalyst for H2 production, DaltonTrans. 42 (2013) 9976‒9981.
[55]M. Khatamian, M.S. Oskoui, M. Haghighi, Photocatalytic hydrogen generation over CdS–metalosilicate composites under visible light irradiation, New J. Chem. 38 (2014) 1684‒1693.
[56]S.R. Lingampalli, K. Ujjal, Gautam, C.N.R. Rao, Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid, Energy Environ. Sci. 6 (2013) 3589‒3594.
[57]P.V. Kamat, Tailoring nanostructured thin films, Chemtech (1995) 22.
[58]A.L Linsebigler, G. Lu, J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735.
[59]J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells 90 (2006) 1773.
[60]X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891‒2959.
[61]A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 3‒278.
[62]D.J. Temple, A.B. Kehoe, J.P. Allen, G.W. Watson, D.O. Scanlon, Geometry, electronic structure, and bonding in CuMCh2 (M = Sb, Bi; Ch = S, Se): Alternative solar cell absorber materials?, J. Phys. Chem. C 116 (2012) 7334−7340.
[63]S.H. Pawar, A.J. Pawar, P.N. Bhosale, Spray pyrolytic deposition of CuBiS2 thin films, Bull. Mater. Sci. 8 (1986) 423−426.
[64]K.L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview, Prog. Photovoltaics 12 (2004) 69−92.
[65]A. Kyono, M. Kimata, Crystal structures of chalcostibite (CuSbS2) and emplectite (CuBiS2): Structural relationship of stereochemical activity between chalcostibite and emplectite, Am. Mineral. 90 (2005) 162−165.
[66]A. Walsh, G.W. Watson, D.J. Payne, R.G. Edgell, J. Guo, P.A Glans, T. Learmonth, K.E. Smith, Electronic structure of the α and δ phases of Bi2O3: A combined ab initio and x-ray spectroscopy study, Phys. Rev. B 73 (2006) 235104.
[67]A. Walsh, D.J. Payne, R.G. Egdell, G.W. Watson, Stereochemistry of post-transition metal oxides: revision of the classical lone pair model, Chem. Soc. Rev. 40 (2011) 4455−4463.
[68]M.L. Guan, D.K. Ma, S.W. Hu, Y.J. Chen, S.M. Huang, From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres: Controlled synthesis and enhanced visible-light-responsive photocatalytic properties. Inorg. Chem. 50 (2011) 800−805.
[69]H. Xu, Y. Xu, H. Li, J. Xia, J. Xiong, S. Yin, C. Huang, H. Wan, Synthesis, characterization and photocatalytic property of AgBr/BiPO4 heterojunction photocatalyst. Dalton Trans. 41 (2012) 3387−3394.
[70]J.S. Jang, H.G. Kim, S.H. Lee, Efficient photocatalytic degradation of acid orange 7 on metal oxide p−n junction composites under visible light, J. Phys. Chem. Solids 73 (2012) 1372−1377.
[71]D.K. Ma, M.L. Guan, S.S. Liu, Y.Q. Zhang, C.W. Zhang, Y.X. He, S.M. Huang, Controlled synthesis at olive-shaped Bi2S3/ BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity, Dalton Trans. 41 (2012) 5581−5586.
[72]W. Liu, S. Chen, Preparation and characterization of p-n heterojunction photocatalyst Cu2O/In2O3 and its photocatalytic activity under visible and UV light irradiation, J. Electrochem. Soc. 157 (2010) 1029−1035.
[73]S.J. Jum, G.K. Hyun, A.J. Upendra, W.J. Ji, S.L. Jae, Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation, Int. J. Hydrogen Energy 33 (2008) 5975.
[74]K.S. Leshkies, R. Duvakar, J. Basu, E.E. Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices, Nano Letters 7 (2007) 1793‒1798.
[75]P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters, J. Phys. Chem. C, 112 (2008) 18737‒18753.
[76]A. Hagfeldt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev. 95 (1995) 49‒68.
[77]X. Wang, S.O. Pehkonen, A.K. Ray, Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind. Eng. Chem. Res. 43 (2004) 1665−1672.
[78]I. Bedja, P.V. Kamat, Capped semiconductor colloids. synthesis and photoelectrochemical behavior of TiO2 capped SnO2 nanocrystallites, J. Phys. Chem. 99 (1995) 9182‒9188.
[79]H. Abdullah, D.H. Kuo, Photocatalytic performance of Ag and CuBiS2 nanoparticle-coated SiO2/TiO2 composite sphere under visible and ultraviolet light irradiation for azo dye degradation with the assistance of numerous nano p−n diodes. J. Phys. Chem. C 119 (2015) 13632−13641.
[80]M.A. Rahman, M. Muneer, Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon, in aqueous suspensions of titanium dioxide, Desalination 181 (2005) 161.
[81]H.K. Singh, M. Saquib, M. Haque, M. Muneera, D. Bahnemann, Titanium dioxide mediated photocatalysed degradation of phenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid, in aqueous suspensions, J. Mol. Catal. A: Chem. 267 (2007) 66‒72.
[82]W. Bahnemann, M. Muneer, M.M. Haque, Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions, Catal. Today 124 (2007) 133‒148.
[83]Li, Y. X.; Lu, G. X.; Li, S. B., Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy, Chemosphere 52 (2003) 843.
[84]S.G. Lee, S.W. Lee, H.I. Lee, Photocatalytic production of hydrogen from aqueous solution containing CN− as a hole scavenger Appl. Catal. A 207 (2001) 173‒181.
[85]A.A. Nada, M.H. Barakat, H.A. Hamed, N.R. Mohamed, T.N. Veziroglu, Studies on the photocatalytic hydrogen production using suspended modified image photocatalysts, Int. J. Hydrogen Energy 30 (2005) 687‒691.
[86]N.L. Wu, M.S. Lee, Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution, Int. J. Hydrogen Energy 29 (2004) 1601‒1605.
[87]G.R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2, J. Photochem. Photobiol. A 89 (1995) 177‒189.
[88]Z. Zhang, J.T. Yates Jr, Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces, Chem. Rev. 112 (2012) 5520‒5551.
[89]T. Uddin, Metal oxide heterostructures for efficient photocatalysts, Department of Material and Geosciences Technical, University of Darmstadt (2013).
[90]Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity, ACS Appl. Mater. Interfaces 2 (2010) 2915‒2923.
[91]A.W. Bott, Electrochemistry of semiconductor, Curr. Sep. 17 (1998) 87‒92.
[92]M. Gratzel, Heterogeneous photochemical electron transfer; CRC Press: Boca Raton, 1989.
[93]C. Shifu, Z. Wei, L. Wei, Z. Huaye, Y. Xiaoling, C. Yinghao, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation, Journal of Hazardous Materials 172 (2009) 1415–1423.
[94]B.M. Almeida, M.A. Melo Jr, J. Bettini, J.E. Benedetti, A.F. Nogueira, A novel nanocomposite based on TiO2/Cu2O/reduced graphene oxide with enhanced solar-light-driven photocatalytic activity, Applied Surface Science 324 (2015) 419–431.
[95]S. Min, F. Wang, Z. Jin, J. Xu, Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation, Superlattices and Microst. 74 (2014) 294–307.
[96]D. Jiang, L. Chen, J. Zhu, M. Chen, W. Shi, J. Xie, Novel p–n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: Facile synthesis and enhanced photocatalytic activity, Dalton Trans. 42 (2013) 15726‒15734.
[97]N. Liang, M. Wang, L. Jin, S. Huang, W. Chen, M. Xu, Q. He, J. Zai, N. Fang, X. Qian, Highly efficient Ag2O/Bi2O2CO3 p‑n heterojunction photocatalysts with improved visible-light responsive activity, ACS Appl. Mater. Interfaces 6 (2014) 11698−11705.
[98]K. Wang, C. Shao, X. Li, F. Miao, N. Lu, Y. Liu, Heterojunctions of p-BiOI nanosheets/n-TiO2 nanofibers: Preparation and enhanced visible-light photocatalytic activity, Materials 9 (2016) 90.
[99]M. Lu, G. Yuan, Z. Wang, Y. Wang, J. Guo, Synthesis of BiPO4/Bi2S3 heterojunction with enhanced photocatalytic activity under visible-light irradiation, Nanoscale Research Letters 10 (2015) 385.
[100]T. Xie, C. Liu, L. Xu, J. Yang, W. Zhou, Novel heterojunction Bi2O3/SrFe12O19 magnetic photocatalyst with highly enhanced photocatalytic activity, J. Phys. Chem. C 117 (2013) 24601−24610.
[101]D. Sarkar, C.K. Ghosh, S. Mukherjee, K.K. Chattopadhyay, Three dimensional Ag2O/TiO2 Type-II (p−n) nanoheterojunctions for superior photocatalytic activity, ACS Appl. Mater. Interfaces 5 (2013) 331−337.
[102]A.E. Kandjani, Y.M. Sabri, S.R. Periasamy, N. Zohora, M.H. Amin, A. Nafady, S.K. Bhargava, Controlling core/shell formation of nanocubic p‑Cu2O/n‑ZnO toward enhanced photocatalytic performance, Langmuir 31 (2015) 10922−10930.
[103]Z. Chen, Y.J. Xu, Ultrathin TiO2 layer coated-CdS spheres core−shell nanocomposite with enhanced visible-light photoactivity, ACS Appl. Mater. Interfaces 5 (2013) 13353−13363.
[104]R.J.V. Michael, J. Theerthagiri, J. Madhavan, M.J. Umapathya, P.T. Manoharan, Cu2S-incorporated ZnS nanocomposites for photocatalytic hydrogen evolution, RSC Adv. 5 (2015) 30175‒30186.
[105]M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, X. Fu, New photocatalyst, Sb2S3, for degradation of methyl orange under visible-light irradiation, J. Phys. Chem. C 112 (2008) 18076–18081.
[106]Y.X. Yu, W.X. Ouyang, Z.T. Liao, B.B. Du, W.D. Zhang, Construction of ZnO/ZnS/CdS/CuInS2 Core−shell nanowire arrays via ion exchange: p−n junction photoanode with enhanced photoelectrochemical activity under visible light, ACS Appl. Mater. Interfaces 6 (2014) 8467−8474.
[107]J.S. Jang , D.W. Hwang, J.S. Lee, CdS–AgGaS2 photocatalytic diodes for hydrogen production from aqueous Na2S/Na2SO3 electrolyte solution under visible light (λ>420 nm), Catalysis Today 120 (2007) 174–181.
[108]E.J. Curry, E.M. Warshaw, Benzyl alcohol allergy: importance of patch testing with personal products, Dermatitis 16 (2005) 203–208.
[109]F. Brühne, E. Wright, Benzyl Alcohol, Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, 2007, pp. 7–8.
[110]S.G. Kulkarni, H.M. Mehendale, Benzyl Alcohol, Encyclopedia of Toxicology 1 (2nd ed.), Elsevier, 2005, pp. 262–264.
[111]J. Jitputti, Y. Suzuki, S. Yoshikawa, Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution, Catalysis Communications 9 (2008) 1265–1271.
[112]Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, J. Am. Chem. Soc. 133 (2011) 10878–10884.
[113]J. Krysa, G. Waldner, H. Mestankova, J. Jirkovsky, G. Grabner, Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer: Roles of adsorption processes and mechanistic complexity, Appl. Catal. B 64 (2006) 290–301.
[114]J.A. Byrne, B.R. Eggins, N.M.D. Brown, B. McKinney, M. Rouse, Immobilisation of TiO2 powder for the treatment of polluted water. Appl. Catal. B 17 (1998) –36.
[115]H. Han, R. Bai, Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV–Vis and Vis lights, Sep. Purif. Technol. 73 (2010) 142–150.
[116]C. Sriwong, S. Wongnawa, O. Patarapaiboolchai, Photocatalytic activity of rubber sheet impregnated with TiO2 particles and its recyclability, Catal. Commun. 9 (2008) 213–218.
[117]S. Singh, H. Mahalingam, P.K. Singh, Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review, Applied Catalysis A: General 462– 463 (2013) 178– 195.
[118]K. Tennakone, C.T.K. Tilakaratne, I.R.M. Kottegoda, Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films, J. Photochem. Photobiol. A 87 (1995) 177–179.
[119]K. Tennakone, I.R.M. Kottegoda, Photocatalytic mineralization of paraquat dissolved in water by TiO2 supported on polythene and polypropylene films. J. Photochem. Photobiol. A 93 (1) (1996) 79–81.
[120]H. Uchida, S. Katoh, M. Watanabe, Photocatalytic degradation of trichlorobenzene using immobilized TiO2 flms containing poly(tetrafuoroethylene) and platinum metal catalyst, Electrochim. Acta 43 (14–15) (1998) 2111–2116.
[121]M. Langlet, A. Kim, M. Audier, J.M. Herrmann, Sol-gel preparation of photocatalytic TiO2 films on polymer substrates J. Sol-Gel Sci. Technol. (2002) 223–234
[122]K. Iketania, R.D. Sun, M. Toki, K. Hirota, O. Yamaguchi, Sol-gel-derived TiO2/poly(dimethylsiloxane) hybrid films and their photocatalytic activities. J. Phys. Chem. Solids 64 (3) (2003) 507–513.
[123]J.H. Yang, Y.S. Han, J.H. Choy, TiO2 thin-films on polymer substrates and their photocatalytic activity, Thin Solid Films 495 (2006) 266–271.
[124]F. Wang, S.X. Min, TiO2/polyaniline composites: An efficient photocatalyst for the degradation of methylene blue under natural light, Chin. Chem. Lett. 18 (2007) 1273–1277.
[125]X. Li, D. Wang, G. Cheng, Q. Luo, J. An, Y. Wang, Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination, Appl. Catal. B 81 (3–4) (2008) 267–273.
[126]D.S. Wang, J. Zhang, Q. Luo, X.Y. Li, Y. Duan, J. An, Characterization and photocatalytic activity of poly(3-hexyl thiophene)-modified TiO2 for degradation of methyl orange under visible light, J. Hazard. Mater. 169 (1–3) (2009) 546–550.
[127]S.A. Elfeky, A.A. Al-Sherbini, Photocatalytic decomposition of Trypan Blue over nanocomposite thin films, Kinet. Catal. 52 (3) (2011) 391–396.
[128]S.A. Elfeky, A.A. Al-Sherbini, Photo-oxidation of rhodamine-6-g via TiO2 and Au/TiO2-bound polythene beads, J. Nanomater. 2011 (2011) 8.
[129]C. Sriwong, S. Wongnawa, O. Patarapaiboolchai, Rubber sheet strewn with TiO2 particles: Photocatalytic activity and recyclability, J. Environ. Sci. 24 (3) (2012) 464–472.
[130]H. Abdullah, D.H. Kuo, Facile synthesis of n‑type (AgIn)xZn2(1−x)S2/p-type Ag2S nanocomposite for visible light photocatalytic reduction To detoxify hexavalent chromium, ACS Appl. Mater. Interfaces, 7 (48) (2015) 26941–26951.
[131]C.C. Wu, H.F. Cho, W.S. Chang, T.C. Lee, A simple and environmentally friendly method of preparing sulfide photocatalyst, Chemical Engineering Science 65(1) (2010) 141−147.
[132]A. Kudo, I. Tsuji, H. Kato, AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation, Chem.Commun. (2002) 1958–1959.
[133]I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Novel stannite-type complex sulfide photocatalysts AI2-Zn-AIV-S4 (AI = Cu and Ag; AIV = Sn and Ge) for hydrogen evolution under visible-light Irradiation, Chem. Mater. 22 (2010) 1402–1409.
[134]K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi, K. Domen, Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: Relationship between physical properties and photocatalytic activity, J. Phys. Chem. B 109 (2005) 20504-20510.
[135]J.N. Hart, M. Cutini, N.L. Allan, Band gap modification of ZnO and ZnS through solid solution formation for applications in photocatalysis, Energy Procedia 60 ( 2014 ) 32 – 36
[136]H.M. Chen , C.K. Chen , R.S. Liu , C.C. Wu , W.S. Chang , K.H. Chen , T.S. Chan , J.F. Lee, D.P. Tsai, A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode, Adv. Energy Mater. 1 (2011) 742–747
[137]C. Persson, C.P. Bjorkman, J. Malmstrom, T. Torndahl, and M. Edoff, Strong valence-band offset bowing of ZnO1-xSx enhances p-type nitrogen doping of ZnO-like alloys, Phys. Rev. Lett. 97 (2006)146403.
[138]L.E. Flitzpatrick: Encyclopedia of Materials Characterization, Butterworth-Heinemann (1992)
[139]C. Smith, D.K. Dewald, T.C. Lee, J.A. Eades, I.M. Robertson, H.K. Birbaum, Transmission electron microscope (TEM) imaging basics, Review of Scientific Instruments, 62 (1992), 1438‒1476.
[140]J. Torrent, V. Barrron, Methods of soil analysis, Soil Science Society of America, 677 S. Segoe Road, Madison, WI 53711, USA (2008).
[141]R.E. Van-Grieken, A.A. Markowicz: Handbook of X-ray photoelectron spectroscopy, Marcel Dekker Inc. (2002).
[142]P. Griffiths, J.A. de Hasseth, Fourier transform infrared spectrometry (2nd ed.), Wiley-Blackwell. ISBN 0-471-19404-2 (2007)
[143]D.R. Smith, R.L. Morgan, E.V. Loewenstein, Comparison of the radiance of far-infrared sources, J. Opt. Soc. Am. 58 (1968) 433–434.
[144]R.M. Silverstein, F.X. Webster, Spectrometric identification of organic compounds, (6th ed.), State university of New York, College of environmental science and forestry (1963).
[145]Available from: http://www.bbc.co.uk/schools/gcsebitesize/science/triple_ocr_21c/further_chemistry/chromatography/revision/5/
[146]Pavia, Donald L., Gary M. Lampman, George S. Kritz, Randall G. Engel, Introduction to Organic Laboratory Techniques (4th Ed.). Thomson Brooks/Cole. pp. 797–817. ISBN 978-0-495-28069-9 (2006).
[147]A.W. Coats, J.P. Redfern, Thermogravimetric analysis: A review, Analyst 88 (1963) 906–924.
[148]V. Balasubramanian, N. Suriyanarayanan, S. Prabahar, S. Srikanth, Structural and optical properties of chemically deposited CuBiS2 thin films, Chalcogenide Lett. 2011, 8, 637−648.
[149]K.P.O. Mahesh, D.H. Kuo, B.R. Huang, M. Ujihara, T. Imae, Chemically modified polyurethane-SiO2/TiO2 hybrid composite film and its reuseability for photocatalytic degradation of Acid Black 1 (AB 1) under UV light, Appl. Catal., A 475 (2014) 235−241.
[150]Z. Zhang, W. Wang, L. Wang, S. Sun, Enhancement of visiblelight photocatalysis by coupling with narrow-band-gap semiconductor: A case study on Bi2S3/Bi2WO6. ACS Appl. Mater, Interfaces 4 (2012) 593−597.
[151]L. Tian, H.Y. Tan, J.J. Vittal, Morphology-controlled synthesis of Bi2S3 nanomaterials via single and multiple-source approaches, Cryst. Growth Des. 8 (2008) 734−738.
[152]M.V. Yakushev, P. Maiello, T. Raadike, M.J. Shawa, P.R. Edwards, J. Krustok, A.V. Mudryi, I. Forbes, R.W. Martin, Electronic and structural characterisation of Cu3BiS3 thin films for the absorber layer of sustainable photovoltaics, Thin Solid Films 562 (2014) 195−199.
[153]V. Estrella, M.T.S. Nair, P.K. Nair, Semiconducting Cu3BiS3 thin films formed by the solid-state reaction of CuS and bismuth thin films, Semicond. Sci. Technol. 18 (2003) 190.
[154]M. Hari, S.A. Joseph, S. Mathew, P. Radhakrishnan, V.P.N. Nampoori, Band-gap tuning and nonlinear optical characterization of Ag:TiO2 nanocomposites, J. Appl. Phys. 112 (2012) 074307.
[155]B. Krishnakumar, M. Suwaminathan, Solar photocatalytic degradation of Acid Black 1 with ZnO, Indian Ind. J. Chem. 49 (2010) 1035−1040.
[156]M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahneman, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69−96.
[157]R.P. Schwarzenbach, P.M. Gschwend, D.M. Imboden, Environmental organic chemistry; Wiley-Interscience: New York (1993) p 681.
[158]C. Liu, D. Yang, Y. Tian, Y. Wang, Z. Jiang, Biomimetic synthesis of TiO2−SiO2−Ag nanocomposites with enhanced visible-light photocatalytic activity, ACS. Appl. Mater. Interfaces 5(9) (2013) 3824−3832.
[159]D. Chen, A.K. Ray, Removal of toxic metal ions from wastewater by semiconductor photocatalysis, Chem. Eng. Sci. 565 (2001) 1561−1570.
[160]I.O. K'Owino, M.A. Omole, O.A. Sadik, Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III), J. Environ. Monit. 9 (2007) 657−665.
[161]M.A. Omole, I.O. K’Owino, O.A. Sadik, Palladium nanoparticles for catalytic reduction of Cr(VI) using formic acid, Appl. Catal., B 76 (2007) 158−167.
[162]S. Peyrav, R. Zahiri, K. Moradi Hersini, Removal of Zn2+ and Cr6+ from waste water samples, using natural iranian (Aftar) zeolites, J. Chem. Health Risks 1 (2011) 11−18.
[163]G. Shams Khorramabadi, R. Darvishi Cheshmeh Soltani, A. Rezaee, A.R Khataee, A. Jonidi Jafari, Utilisation of immobilized activated sludge for the biosorption of chromium (VI), Can. J. Chem. Eng. 90 (2012) 1539−1546.
[164]Z. Liu, G. Wang, X. Zhao, Removal of Cr (VI) from aqueous solution using ultrafine coal fly ash, J. Wuhan Univ. Technol., Mater. Sci. Ed. (2010) 323−327.
[165]M.S. Siboni, M. R. Samarghandi, S. Azizian, W.G. Kim, S.M. Lee, The removal of Cr(VI) from aqueous solutions using modified holly sawdust: Equilibrium and kinetics studies, Environ. Eng. Res. 16 (2011) 55−60.
[166]S.X. Liu, Removal of copper (VI) from aqueous solution by Ag/TiO2 photocatalysis, Bull. Environ. Contam. Toxicol. 74 (2005) 706−714.
[167]S.A. Katz, H. Salem, The toxicology of chromium with respect to its chemical speciation: A review, J. Appl. Toxicol. 13 (1993) 217−224.
[168]J.R. Memon, S.Q. Memon, M.I. Bhanger, M.Y. Khuhawar, Banana peel: A green and economical sorbent for Cr(III) removal, Anal. Environ. Chem. 9 (2008) 20−.
[169]M.V. Dozzi, A. Saccomanni, E. Selli, Cr(VI) photocatalytic reduction: Effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2, J. Hazard. Mater. 211‒212 (2012) 188−195.
[170]J.A. Navio, G. Colon, M. Trillas, J. Peral, X. Domenech, J.J. Testa, J. Padron, D. Rodriguez, M.I. Litter, Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method, Appl. Catal., B 16 (1998) 187−196.
[171]B. Sun, E.P. Reddy, P.G. Smirniotis, Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis, Environ. Sci. Technol. 39 (2005) 61−69.
[172]I.M.C. Lo, C.S.C. Lam, K.C.K. Lai, Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal, Water Res. 40 (2006) 595−605.
[173]J.W. Patterson, Industrial wastewater treatment technology, 2nd ed., Butterworth Publishers, Boston, MA, (1985).
[174]C. Fabiani, F. Ruscio, M. Spadoni, M. Pizzichini, Chromium(III) salts recovery process from tannery wastewaters, Desalination 108 (1997) 183−191.
[175]J. Ludvik, Chrome Management in the Tanyard; United Nations Industrial Development Organization: New York, US/RAS/92/120/11−51 (2000).
[176]Y. Tian, L. Huang, X. Zhou, C. Wu, Electroreduction of Cr(VI) using a polypyrrole-modified electrode under potentiostatic and potentiodynamic conditions, J. Hazard. Mater. 2‒226 (2012) 15−20.
[177]A.H. Lu, S.J. Zhong, J. Chen, J.X. Shi, J.L. Tang, X.Y. Lu, Removal of Cr(VI) and Cr(III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite, Environ. Sci. Technol. 40 (2006) 3064−3069.
[178]S.M. Abdel Moniem, M.E.M. Ali, T.A. Gad-Allah, A.S.G. Khalil, M. Ulbricht, M.F. El-Shahat, A.M. Ashmawy, H.S. Ibrahim, Detoxification of Cr(VI) in wastewater containing organic substances using simonkolleite-TiO2 photocatalyst, Process Saf. Environ. Prot. 95 (2015) 247−4.
[179]Z. Sun, L. Zheng, S. Zheng, R.L. Frost, Preparation and characterization of TiO2/acid leached serpentinite tailings composites and their photocatalytic reduction of chromium (VI), J. Colloid Interface Sci. 404 (2013) 102−109.
[180]C.J. Lin, S.L. Wang, P.M. Huang, Y.M. Tzou, J.C. Liu, C.C. Chen, J.H. Chen, C. Lin, Chromate reduction by zero-valent Al metal as catalyzed by polyoxometalate, Water Res. 43 (2009) 5015−5022.
[181]R. Chaudhary, R.S. Thakur, Photocatalytic treatment of industrial wastewater containing chromium as a model pollutant-effect on process parameters and kinetically studies, J. Renewable Sustainable Energy 4 (2012) 053121.
[182]H. Yoneyama, Y. Yamashita, H. Tamura, Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts, Nature 282 (1979) 817−818.
[183]K. Tanaka, K. Harada, S. Murata, Photocatalytic deposition of metal ions onto TiO2 powder, Sol. Energy 36 (1986) 159−161.
[184]J. Munoz, X. Domenech, TiO2 catalysed reduction of Cr(VI) in aqueous solutions under ultraviolet illumination, J. Appl. Electrochem. 20 (1990) 518−521.
[185]Y. Ku, I. Jung, Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide, Water Res. 35 (2001) 135−142.
[186]W. Lin, C. Wei, K. Rajeshwar, Photocatalytic reduction and immobilization of Cr(VI) at titanium dioxide in aqueous basic media, J. Electrochem. Soc. 140 (1993) 2477−2482.
[187]B. Subash, B. Krishnakumar, V. Pandiyan, M. Swaminathan, M. Shanthi, An efficient nanostructured Ag2S−ZnO for degradation of Acid Black 1 dye under day light illumination, Sep. Purif. Technol. 96 (2012) 204−213.
[188]S. Ma, J. Xue, Y. Zhou, Z. Zhang, Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity, J. Mater. Chem. A 2 (2014) 7272−7280.
[189]I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)xZn2(1‑x)S2 Solid Solutions, J. Phys. Chem. B 109 (2005) 7323−7329.
[190]K. Ueno, T. Imamura, K.L. Cheng, Handbook of organic analytical reagents; CRC Press: Boca Raton, FL, 1992.
[191]A.J. Frueh, The crystallography of silver sulfide, Ag2S. Z. Kristallogr. 110 (1958) 136−144.
[192]R. Sadanaga, S. Sueno, X-Ray study on the α-β transition of Ag2S. Mineral. J. 5 (1967) 124−148.
[193]R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32 (1976) 751−767.
[194]J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray photoelectron spectroscopy; physical electronic Inc., Eden Prairie, MN (1995).
[195]E.H. Kong, Y.J. Chang, H.J. Park, H.M. Jang, Bandgap tuning by using a lattice distortion induced by two symmetries that coexist in a quantum dot. Small 10 (2014) 1300−1307.
[196]J.P. Borah, K.C. Sarma, Optical and optoelectronic properties of ZnS nanostructured thin film. Acta Phiysica Polonica A 114 (2008) 713−719.
[197]N. Üzar, M.C. Arikan, Synthesis and investigation of optical properties of ZnS nanostructures, Bull. Mater. Sci. 34 (2011) 287−292.
[198]R. Bose, G. Manna, S. Jana, N. Pradhan, Ag2S−AgInS2: p−n junction heteronanostructures with quasi type-II band alignment, Chem. Commun. 50 (2014) 3074−3077.
[199]M.M. El-Nahass, A.M.M. Farag, E.M. Ibrahim, S. Abd-El-Rahman, Structural, optical and electrical properties of thermally evaporated Ag2S thin films. Vacuum 72 (2004) 453−460.
[200]M. Shirzad-Siboni, M. Farrokhi, R. Darvishi Cheshmeh Soltani, A. Khataee, S. Tajassosi, Photocatalytic reduction of hexavalent chromium over ZnO nanorods immobilized on kaolin, Ind. Eng. Chem. Res. 53 (2014) 1079−1087.
[201]M. Antonopoulou, A. Giannakas, I. Konstantinou, Simultaneous photocatalytic reduction of Cr(VI) and oxidation of benzoic acid in aqueous N-F-codoped TiO2 suspensions: optimization and modeling using the response surface methodology, Int. J. Photoenergy 2012 (2012) 1−10.
[202]R.L. Qiu, D.D. Zhang, Z. Diao, X.F. Huang, C. He, J.L. Morel, Y. Xiong, Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation, Water Res. 46 (2012) 2299−2306.
[203]G.C.C. Yang, S.W. Chan, Photocatalytic reduction of Chromium(VI) in aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation, J. Nanopart. Res. 11 (2009) 221−230.
[204]J. Su, Y. Zhang, S. Xu, S. Wang, H. Ding, S. Pan, G. Wang, G. Li, H. Zhao, Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions, Nanoscale 6 (2014) 5181−5192.
[205]S.C. Xu, S.S. Pan, Y. Xu, Y.Y. Luo, Y.X. Zhang, G.H. Li, Efficient removal of Cr(VI) from waste water under sunlight by Fe(II)-doped TiO2 spherical shell, J. Hazard. Mater. 283 (2015) 7−13.
[206]T. Zhu, C. Zhang, G.H. Ho, In situ dissolution-diffusion toward homogeneous multiphase Ag/Ag2S@ZnS core-shell heterostructures for enhanced photocatalytic performance, J. Phys. Chem. C 119 (2015) 1667−1675.
[207]N.S. Chaudhari, S.S. Warule, B.B. Kale, Architecture of rose and hollow marigold-like ZnIn2S4 flowers: Structural, optical and photocatalytic study, RSC Adv. 4 (2014) 12182−12187.
[208]Y.D. Liu, L. Ren, X. Qi, Y. Wang, X.J. Liu, J.X. Zhong, One-step hydrothermal fabrication and enhancement of the photocatalytic performance of CdMoO4/CdS hybrid materials, RSC Adv. 4 (2014) 8772−8778.
[209]B. Weng, S.Q. Liu, Z.R. Tang, Y.J. Xu, One-dimensional nanostructure based materials for versatile photocatalytic applications, RSC Adv. 4 (2014) 12685−12700.
[210]J.X. Sun, G. Chen, Y. Feng, Y. Wang, Ag/Cu co-doped ZnS−In2S3 solid solutions: facile synthesis, theoretical calculations and enhanced photocatalytic activity, RSC Adv. 4 (2014) 44466−44471.
[211]T. Torimoto, T. Adachi, K.I. Okazaki, M.; Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, S. Kuwabata, Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore, J. Am. Chem. Soc. 129 (2007) 12388−12389.
[212]H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls, Adv. Funct. Mater. 20 (2010) 561−572.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top