|
1.Hench, L.L.; Splinter, R.J.; Allen, W.C.; Greenlee, T.K. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971, 5, 117-141. 2.Hench, L.L. Bioactive ceramics. Ann Ny Acad Sci 1988, 523, 54-71. 3.Otsuka, M.; Matsuda, Y.; Kokubo, T.; Yoshihara, S.; Nakamura, T.; Yamamuro, T. Drug release from a novel self-setting bioactive glass bone cement containing cephalexin and its physicochemical properties. J Biomed Mater Res 1995, 29, 33-38. 4.Li, R.; Clark, A.E.; Hench, L.L. An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 1991, 2, 231-239. 5.Vallet-Regi, M.; Ramila, A.; del Real, R.P.; Perez-Pariente, J. A new property of mcm-41: Drug delivery system. Chem Mater 2001, 13, 308-311. 6.Tommila, M.; Jokinen, J.; Wilson, T.; Forsback, A.P.; Saukko, P.; Penttinen, R.; Ekholm, E. Bioactive glass-derived hydroxyapatite-coating promotes granulation tissue growth in subcutaneous cellulose implants in rats. Acat Biomater 2008, 4, 354-361. 7.Matsumoto, T.; Kuroda, R.; Mifune, Y.; Kawamoto, A.; Shoji, T.; Miwa, M.; Asahara, T.; Kurosaka, M. Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone 2008, 43, 434-439. 8.Stoor, P.; Kirstila, V.; Soderling, E.; Kangasniemi, I.; Herbst, K.; YliUrpo, A. Interactions between bioactive glass and periodontal pathogens. Microb Ecol Health D 1996, 9, 109-114. 9.El-Kady, A.M.; Ali, A.F.; Rizk, R.A.; Ahmed, M.M. Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram Int 2012, 38, 177-188. 10.Shih, S.-J.; Tzeng, W.-L.; Jatnika, R.; Shih, C.-J.; Borisenko, K.B. Control of ag nanoparticle distribution influencing bioactive and antibacterial properties of ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis. J Biomed Mater Res B 2015, 103, 899-907. 11.Wu, C.; Zhou, Y.; Xu, M.; Han, P.; Chen, L.; Chang, J.; Xiao, Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 2013, 34, 422-433. 12.Kim, T.N.; Feng, Q.L.; Kim, J.O.; Wu, J.; Wang, H.; Chen, G.C.; Cui, F.Z. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J mater Sci-Mater M 1998, 9, 129-134. 13.Ewald, A.; Käppel, C.; Vorndran, E.; Moseke, C.; Gelinsky, M.; Gbureck, U. The effect of cu(ii)-loaded brushite scaffolds on growth and activity of osteoblastic cells. J Biomed Mater Res A 2012, 100A, 2392-2400. 14.Sen, C.K.; Khanna, S.; Venojarvi, M.; Trikha, P.; Ellison, E.C.; Hunt, T.K.; Roy, S. Copper-induced vascular endothelial growth factor expression and wound healing. 2002; Vol. 282, p H1821-H1827. 15.Sterritt, R.M.; Lester, J.N. Interactions of heavy metals with bacteria. Sci Total Environ 1980, 14, 5-17. 16.Ueda, K.; Morita, J.; Yamashita, K.; Komano, T. Inactivation of bacteriophage x174 by mitomycin c in the presence of sodium hydrosulfite and cupric ions. Chem-Biol Interact 1980, 29, 145-158. 17.Hutchinson, D.W. Metal chelators as potential antiviral agents. Antivir Res 1985, 5, 193-205. 18.Michels, H.; Wilks, S.; Noyce, J.; Keevil, C. Copper alloys for human infectious disease control. MS&T Conf. 2005. 19.Schäfer, B.; Brocke, J.; Epp, A.; Götz, M.; Herzberg, F.; Kneuer, C.; Sommer, Y.; Tentschert, J.; Noll, M.; Günther, I., et al. State of the art in human risk assessment of silver compounds in consumer products: A conference report on silver and nanosilver held at the bfr in 2012. Arch Toxicol 2013, 87, 2249-2262. 20.Lenza, R.F.S.; Jones, J.R.; Vasconcelos, W.L.; Hench, L.L. In vitro release kinetics of proteins from bioactive foams. J Biomed Mater Res A 2003, 67A, 121-129. 21.Hench, L.L.; Polak, J.M. Third-generation biomedical materials. Science 2002, 295, 1014-1017. 22.Ivey, K.N.; Muth, A.; Arnold, J.; King, F.W.; Yeh, R.F.; Fish, J.E.; Hsiao, E.C.; Schwartz, R.J.; Conklin, B.R.; Bernstein, H.S., et al. Microrna regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2008, 2, 219-229. 23.Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS nano 2011, 5, 6971-6980. 24.Lee, W.C.; Lim, C.H.; Shi, H.; Tang, L.A.; Wang, Y.; Lim, C.T.; Loh, K.P. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS nano 2011, 5, 7334-7341. 25.Akhavan, O.; Ghaderi, E. Differentiation of human neural stem cells into neural networks on graphene nanogrids. J Mater Chem B 2013, 1, 6291-6301. 26.Shih, S.-J.; Chien, I.C. Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technol 2013, 237, 436-441. 27.Smrke, D.; Rozman, P.; MatjazVeselko, B.G. Treatment of bone defects-allogenic platelet gel and autologous bone technique. Regenerative Medicine and Tissue Engineering, Prof. Jose A. Andrades (Ed.), InTech 2013. 28.Lin, Y.C.; Cao, Y.; Jang, J.H.; Shu, C.M.; Webb, C.; Pan, W.P. The synthesis and characterization of graphene oxides based on a modified approach. J Therm Anal Calorim 2014, 116, 1249-1255. 29.Higginbotham, A.L.; Kosynkin, D.V.; Sinitskii, A.; Sun, Z.; Tour, J.M. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS nano 2010, 4, 2059-2069. 30.Mays, S. The archaeology of human bones. Taylor & Francis: 1998. 31.London, R.C.o.P.o. In Osteoporosis: Clinical guidelines for prevention and treatment, 1999; Royal College of Physicians. 32.Kaplan, F.; Hayes, W.; Keaveny, T.; Boskey, A.; Einhorn, T.; Iannotti, J. Form and function of bone. Orthopaedic Basic Science 1994, 127-185. 33.Martin, R.B.; Burr, D.B. Structure, function, and adaptation of compact bone. Raven Pr: 1989. 34.Hollister, S.J.; Kikuchi, N. Homogenization theory and digital imaging: A basis for studying the mechanics and design principles of bone tissue. 1994. 35.Weiner, S.; Traub, W. Bone structure: From angstroms to microns. The Faseb journal 1992, 6, 879-885. 36.Fu, Q.; Saiz, E.; Rahaman, M.N.; Tomsia, A.P. Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Mater Sci Eng C 2011, 31, 1245-1256. 37.Bianco, P.; Robey, P.G. Stem cells in tissue engineering. Nature 2001, 414, 118-121. 38.Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone tissue engineering: Recent advances and challenges. Crit Rev Biomed Eng 2012, 40. 39.Serre, C.M.; Papillard, M.; Chavassieux, P.; Boivin, G. In vitro induction of a calcifying matrix by biomaterials constituted of collagen and/or hydroxyapatite: An ultrastructural comparison of three types of biomaterials. Biomaterials 1993, 14, 97-106. 40.Hansen, D.C. Metal corrosion in the human body: The ultimate bio-corrosion scenario. T Electrochem Soc Int 2008, 17, 31. 41.Hench, L.L. The story of bioglass®. J Mater Sci-Mater M 2006, 17, 967-978. 42.Hench, L.L.; Wilson, J. An introduction to bioceramics. World Scientific: 1993; Vol. 1. 43.Hench, L.L. Bioceramics: From concept to clinic. J Am Ceram Soc 1991, 74, 1487-1510. 44.Capello, W.N.; D'Antonio, J.A.; Feinberg, J.R.; Manley, M.T.; Naughton, M. Ceramic-on-ceramic total hip arthroplasty: Update. J Arthrthroplasty 2008, 23, 39-43. 45.Oonishi, H.; Clarke, I.C.; Good, V.; Amino, H.; Ueno, M. Alumina hip joints characterized by run‐in wear and steady‐state wear to 14 million cycles in hip‐simulator model. J Biomed Mater Res A 2004, 70, 523-532. 46.Fidancevska, E.; Ruseska, G.; Bossert, J.; Lin, Y.-M.; Boccaccini, A.R. Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania. Mater Chem Phys 2007, 103, 95-100. 47.Hench, L.L.; Paschall, H. Direct chemical bond of bioactive glass‐ceramic materials to bone and muscle. J Biomed Mater Res 1973, 7, 25-42. 48.Fu, Q.; Rahaman, M.N.; Fu, H.; Liu, X. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A 2010, 95, 164-171. 49.Yuan, H.; de Bruijn, J.D.; Zhang, X.; van Blitterswijk, C.A.; de Groot, K. Bone induction by porous glass ceramic made from bioglass®(45s5). J Biomed Mater Res 2001, 58, 270-276. 50.Al Ruhaimi, K.A. Bone graft substitutes: A comparative qualitative histologic review of current osteoconductive grafting materials. Int J Oral Max Impl 2001, 16. 51.Gunawidjaja, P.N.; Mathew, R.; Lo, A.Y.; Izquierdo-Barba, I.; García, A.; Arcos, D.; Vallet-Regí, M.; Edén, M. Local structures of mesoporous bioactive glasses and their surface alterations in vitro: Inferences from solid-state nuclear magnetic resonance. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 2012, 370, 1376-1399. 52.Clark, A.; Pantano, C.; Hench, L. Auger spectroscopic analysis of bioglass corrosion films. J Am Ceram Soc 1976, 59, 37-39. 53.Le Guéhennec, L.; Layrolle, P.; Daculsi, G. A review of bioceramics and fibrin sealant. Eur Cell Mater 2004, 8, 1e11. 54.Jones, J.R. Reprint of: Review of bioactive glass: From hench to hybrids. Acta Biomater 2015, 23, S53-S82. 55.Jayaswal, G.P.; Dange, S.; Khalikar, A. Bioceramic in dental implants: A review. The Journal of Indian Prosthodontic Society 2010, 10, 8-12. 56.Chen, W.-C.; Kung, J.-C.; Chen, C.-H.; Hsiao, Y.-C.; Shih, C.-J.; Chien, C.-S. Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion. Appl Surf Sci 2013, 283, 833-842. 57.Lopez-Esteban, S.; Saiz, E.; Fujino, S.; Oku, T.; Suganuma, K.; Tomsia, A.P. Bioactive glass coatings for orthopedic metallic implants. J Eur Ceram Soc 2003, 23, 2921-2930. 58.Ducheyne, P. Bioglass coatings and bioglass composites as implant materials. J Biomed Mater Res 1985, 19, 273-291. 59.Domingues, Z.R.; Cortés, M.E.; Gomes, T.A.; Diniz, H.F.; Freitas, C.S.; Gomes, J.B.; Faria, A.M.C.; Sinisterra, R.D. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials 2004, 25, 327-333. 60.Allan, I.; Newman, H.; Wilson, M. Antibacterial activity of particulate bioglass® against supra-and subgingival bacteria. Biomaterials 2001, 22, 1683-1687. 61.Gristina, A.G. Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science 1987, 237, 1588-1595. 62.Zamet, J.; Darbar, U.; Griffiths, G.; Bulman, J.; Brägger, U.; Bürgin, W.; Newman, H. Particulate bioglass® as a grafting material in the treatment of periodontal intrabony defects. J Clin Periodontol 1997, 24, 410-418. 63.Earl, J.; Leary, R.; Muller, K.; Langford, R.; Greenspan, D. Physical and chemical characterization of dentin surface following treatment with novamin technology. J Clin Dent 2010, 22, 62-67. 64.Zhang, D.; Munukka, E.; Hupa, L.; Ylänen, H.O.; Viljanen, M.K.; Hupa, M. In Factors controlling antibacterial properties of bioactive glasses, Key Engineering Materials, 2007; Trans Tech Publ: pp 173-176. 65.Gorriti, M.F.; López, J.M.P.; Boccaccini, A.R.; Audisio, C.; Gorustovich, A.A. In vitro study of the antibacterial activity of bioactive glass‐ceramic scaffolds. Adv Eng Mater 2009, 11, B67-B70. 66.Li, R.; Clark, A.; Hench, L. An investigation of bioactive glass powders by sol‐gel processing. J Appl Biomater 1991, 2, 231-239. 67.Goh, Y.-F.; Alshemary, A.Z.; Akram, M.; Kadir, M.R.A.; Hussain, R. In-vitro characterization of antibacterial bioactive glass containing ceria. Ceramics International 2014, 40, 729-737. 68.Zhu, H.; Hu, C.; Zhang, F.; Feng, X.; Li, J.; Liu, T.; Chen, J.; Zhang, J. Preparation and antibacterial property of silver-containing mesoporous 58s bioactive glass. Materials Science and Engineering: C 2014, 42, 22-30. 69.Waltimo, T.; Brunner, T.; Vollenweider, M.; Stark, W.; Zehnder, M. Antimicrobial effect of nanometric bioactive glass 45s5. Journal of Dental Research 2007, 86, 754-757. 70.Different size, shape and arrangement of bacterial cells, http://www.microbiologyinfo.com/different-size-shape-and-arrangement-of-bacterial-cells/. 71.Birge, E.A. Bacterial and bacteriophage genetics. Springer Science & Business Media: 2013. 72.Prokaryotes vs eukaryotes, http://www.slideshare.net/mgsonline/prokaryotes-vs-eukaryotes. 73.Gram staining, http://www.medical-labs.net/gram-staining-1099/. 74.Manning, S.D. Escherichia coli infections. Infobase Publishing: 2010. 75.Zuber, B.; Haenni, M.; Ribeiro, T.; Minnig, K.; Lopes, F.; Moreillon, P.; Dubochet, J. Granular layer in the periplasmic space of gram-positive bacteria and fine structures of enterococcus gallinarum and streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections. Journal of bacteriology 2006, 188, 6652-6660. 76.Knox, K.; Wicken, A. Immunological properties of teichoic acids. Bacteriological reviews 1973, 37, 215. 77.Cot, M.; Ray, A.; Gilleron, M.; Vercellone, A.; Larrouy-Maumus, G.; Armau, E.; Gauthier, S.; Tiraby, G.; Puzo, G.; Nigou, J.m. Lipoteichoic acid in streptomyces hygroscopicus: Structural model and immunomodulatory activities. Plos One 2011, 6, e26316. 78.Anderson, R.; Groundwater, P.; Todd, A.; Worsley, A. Antibacterial agents: Chemistry, mode of action, mechanisms of resistance and clinical applications. John Wiley & Sons: 2012. 79.Topographical images of colonies of e. Coli o157:H7 strains (a) 43895ow (curli non-producing) and (b) 43895or (curli producing) grown on agar for 48 h at 28°c. 80.Guerrant, R.L.; Van Gilder, T.; Steiner, T.S.; Thielman, N.M.; Slutsker, L.; Tauxe, R.V.; Hennessy, T.; Griffin, P.M.; DuPont, H.; Sack, R.B. Practice guidelines for the management of infectious diarrhea. Clinical Infectious Diseases 2001, 32, 331-351. 81.Escherichia coli bacteria, http://artsonearth.com/2011/05/e-coli-bacterium-under-microscope.html. 82.Vial, P.A.; Robins-Browne, R.; Lior, H.; Prado, V.; Kaper, J.B.; Nataro, J.P.; Maneval, D.; Levine, M.M. Characterization of enteroadherent-aggregative escherichia coli, a putative agent of diarrheal disease. Journal of Infectious Diseases 1988, 158, 70-79. 83.Fratamico, P.M.; Smith, J.L. Escherichia coli infections. Foodborne Infections and Intoxications 2006, 205-208. 84.Persson, S.; Olsen, K.E.; Ethelberg, S.; Scheutz, F. Subtyping method for escherichia coli shiga toxin (verocytotoxin) 2 variants and correlations to clinical manifestations. Journal of Clinical Microbiology 2007, 45, 2020-2024. 85.Stenström, T.-A.; Kjelleberg, S. Fimbriae mediated nonspecific adhesion of salmonella typhimurium to mineral particles. Arch Microbiol 1985, 143, 6-10. 86.Freeman-Cook, L.; Freeman-Cook, K.D.; Alcamo, I.E.; Heymann, D.L. Staphylococcus aureus infections. Infobase Publishing: 2006. 87.Schwartz, B. In The paradox of choice, 2004; Ecco New York. 88.Kim, T.; Feng, Q.; Kim, J.; Wu, J.; Wang, H.; Chen, G.; Cui, F. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. Journal of Materials Science: Materials in Medicine 1998, 9, 129-134. 89.Stoor, P.; Kirstilä, V.; Söderling, E.; Kangasniemi, I.; Herbst, K.; Yli-Urpo, A. Interactions between bioactive glass and periodontal pathogens. Microbial Ecology in Health and Disease 1996, 9, 109-114. 90.Shih, S.-J.; Chien, I.-C. Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technology 2013, 237, 436-441. 91.Shih, S.J.; Tzeng, W.L.; Jatnika, R.; Shih, C.J.; Borisenko, K.B. Control of ag nanoparticle distribution influencing bioactive and antibacterial properties of ag‐doped mesoporous bioactive glass particles prepared by spray pyrolysis. J Biomed Mater Res B 2015, 103, 899-907. 92.Li, W.-R.; Xie, X.-B.; Shi, Q.-S.; Zeng, H.-Y.; You-Sheng, O.-Y.; Chen, Y.-B. Antibacterial activity and mechanism of silver nanoparticles on escherichia coli. Applied Microbiology and Biotechnology 2010, 85, 1115-1122. 93.Feng, Q.; Wu, J.; Chen, G.; Cui, F.; Kim, T.; Kim, J. A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus. Journal of Biomedical Materials Research 2000, 52, 662-668. 94.Schäfer, B.; Vom Brocke, J.; Epp, A.; Götz, M.; Herzberg, F.; Kneuer, C.; Sommer, Y.; Tentschert, J.; Noll, M.; Günther, I. State of the art in human risk assessment of silver compounds in consumer products: A conference report on silver and nanosilver held at the bfr in 2012. Archives of Toxicology 2013, 87, 2249-2262. 95.Honda, M.; Kawanobe, Y.; Ishii, K.; Konishi, T.; Mizumoto, M.; Kanzawa, N.; Matsumoto, M.; Aizawa, M. In vitro and in vivo antimicrobial properties of silver-containing hydroxyapatite prepared via ultrasonic spray pyrolysis route. Materials Science and Engineering: C 2013, 33, 5008-5018. 96.Paul, T.; Miller, P.L.; Strathmann, T.J. Visible-light-mediated tio2 photocatalysis of fluoroquinolone antibacterial agents. Environmental Science & Technology 2007, 41, 4720-4727. 97.Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530-1534. 98.Novoselov, K.S.; Geim, A.K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.a.; Grigorieva, I.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669. 99.Geim, A.K.; Novoselov, K.S. The rise of graphene. Nature Materials 2007, 6, 183-191. 100.Li, J.; Wang, G.; Zhu, H.; Zhang, M.; Zheng, X.; Di, Z.; Liu, X.; Wang, X. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Scientific Reports 2014, 4. 101.Perreault, F.; de Faria, A.F.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chemical Society Reviews 2015, 44, 5861-5896. 102.Brock, T.D. Milestones in microbiology. Academic Medicine 1961, 36, 847. 103.Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-based antibacterial paper. ACS nano 2010, 4, 4317-4323. 104.Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS nano 2011, 5, 6971-6980. 105.Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2014, 6, 1879-1889. 106.Liu, S.; Hu, M.; Zeng, T.H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 2012, 28, 12364-12372. 107.Qi, X.; Wang, T.; Long, Y.; Ni, J. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system. Scientific Reports 2015, 5. 108.Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H. Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 2013, 8, 594-601. 109.Mao, J.; Guo, R.; Yan, L.-T. Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets. Biomaterials 2014, 35, 6069-6077. 110.Lyon, D.Y.; Alvarez, P.J. Fullerene water suspension (nc60) exerts antibacterial effects via ros-independent protein oxidation. Environmental Science & Technology 2008, 42, 8127-8132. 111.Garza, K.M.; Soto, K.F.; Murr, L.E. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. International Journal of Nanomedicine 2008, 3, 83. 112.Krishnamoorthy, K.; Umasuthan, N.; Mohan, R.; Lee, J.; Kim, S.-J. Antibacterial activity of graphene oxide nanosheets. Sci Adv Mat 2012, 4, 1111-1117. 113.Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nature Nanotechnology 2009, 4, 217-224. 114.Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373-399. 115.Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Park, M.-R.; Kwon, D.-N.; Kim, J.-H. Antibacterial activity of dithiothreitol reduced graphene oxide. J Ind Eng Chem 2013, 19, 1280-1288. 116.Sheet, I.; Holail, H.; Olama, Z.; Kabbani, A.; Hines, M. The antibacterial activity of graphite oxide, silver, impregnated graphite oxide with silver and go-coated sand nanoparticles against waterborne pathogenic e. Coli bl21. Int J Curr Microbiol App Sci 2013, 2, 1-11. 117.Badiei, E.; Sangpour, P.; Bagheri, M.; Pazouki, M. Graphene oxide antibacterial sheets: Synthesis and characterization (research note). Int J Eng-Tran C 2014, 27, 1803. 118.Mazaheri, M.; Akhavan, O.; Simchi, A. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Appl Surf Sci 2014, 301, 456-462. 119.Badiei, E.; Sangpour, P.; Bagheri, M.; Pazouki, M. Graphene oxide antibacterial sheets: Synthesis and characterization. International Journal of Engineering-Transactions C: Aspects 2014, 27, 1803. 120.Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem Res Toxicol 2011, 25, 15-34. 121.Schulz, H.; Harder, V.; Ibald-Mulli, A.; Khandoga, A.; Koenig, W.; Krombach, F.; Radykewicz, R.; Stampfl, A.; Thorand, B.; Peters, A. Cardiovascular effects of fine and ultrafine particles. Journal of Aerosol Medicine 2005, 18, 1-22. 122.Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters 2010, 10, 3318-3323. 123.Yan, L.; Zhao, F.; Li, S.; Hu, Z.; Zhao, Y. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 2011, 3, 362-382. 124.Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research 2008, 1, 203-212. 125.Xia, W.; Chang, J. Well-ordered mesoporous bioactive glasses (mbg): A promising bioactive drug delivery system. Journal of Controlled Release 2006, 110, 522-530. 126.Gilchrist, J.; Campbell, J.; Donnelly, C.; Peeler, J.; Delaney, J. Spiral plate method for bacterial determination. Applied Microbiology 1973, 25, 244-252. 127.Reed, R.; Reed, G. " Drop plate" method of counting viable bacteria. Canadian Journal of Research 1948, 26, 317-326. 128.Kokubo, T. Bioactive glass ceramics: Properties and applications. Biomaterials 1991, 12, 155-163. 129.Kokubo, T.; Takadama, H. How useful is sbf in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907-2915. 130.Oonishi, H.; Hench, L.; Wilson, J.; Sugihara, F.; Tsuji, E.; Matsuura, M.; Kin, S.; Yamamoto, T.; Mizokawa, S. Quantitative comparison of bone growth behavior in granules of bioglass, a-w glass-ceramic, and hydroxyapatite. Journal of Biomedical Materials Research 2000, 51, 37-46. 131.Bal, B.S.; Rahaman, M.N.; Jayabalan, P.; Kuroki, K.; Cockrell, M.K.; Yao, J.Q.; Cook, J.L. In vivo outcomes of tissue‐engineered osteochondral grafts. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010, 93, 164-174. 132.Tommila, M.; Jokinen, J.; Wilson, T.; Forsback, A.-P.; Saukko, P.; Penttinen, R.; Ekholm, E. Bioactive glass-derived hydroxyapatite-coating promotes granulation tissue growth in subcutaneous cellulose implants in rats. Acta Biomaterialia 2008, 4, 354-361. 133.Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic a‐w3. Journal of Biomedical Materials Research 1990, 24, 721-734. 134.Lin, Y.-C.; Cao, Y.; Jang, J.-H.; Shu, C.-M.; Webb, C.; Pan, W.-P. The synthesis and characterization of graphene oxides based on a modified approach. J Therm Anal Calorim 2014, 116, 1249-1255. 135.Ordikhani, F.; Farani, M.R.; Dehghani, M.; Tamjid, E.; Simchi, A. Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon 2015, 84, 91-102. 136.Venezuela, P.; Lazzeri, M.; Mauri, F. Theory of double-resonant raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Physical Review B 2011, 84, 035433. 137.Boutchich, M.; Jaffré, A.; Alamarguy, D.; Alvarez, J.; Barras, A.; Tanizawa, Y.; Tero, R.; Okada, H.; Thu, T.; Kleider, J.-P. In Characterization of graphene oxide reduced through chemical and biological processes, Journal of Physics: Conference Series, 2013; IOP Publishing: p 012001. 138.Kurita, S.; Yoshimura, A.; Kawamoto, H.; Uchida, T.; Kojima, K.; Tachibana, M.; Molina-Morales, P.; Nakai, H. Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics 2005, 97, 104320-104320. 139.Ferrari, A.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S. Raman spectrum of graphene and graphene layers. Physical Review Letters 2006, 97, 187401. 140.Gaskell, P. Vibrational spectra of simple silicate glasses. Discussions of the Faraday Society 1970, 50, 82-93. 141.Fowler, B. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorganic Chemistry 1974, 13, 194-207. 142.Shih, S.-J.; Lin, Y.-C.; Valentino Posma Panjaitan, L.; Rahayu Meyla Sari, D. The correlation of surfactant concentrations on the properties of mesoporous bioactive glass. Materials 2016, 9, 58. 143.Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS nano 2010, 4, 4806-4814. 144.Hong, Y.; Wang, Z.; Jin, X. Sulfuric acid intercalated graphite oxide for graphene preparation. Sci Rep 2013, 3. 145.Chowdhury, D.R.; Singh, C.; Paul, A. Role of graphite precursor and sodium nitrate in graphite oxide synthesis. RSC Advances 2014, 4, 15138-15145. 146.David, L.; Singh, G. Reduced graphene oxide paper electrode: Opposing effect of thermal annealing on li and na cyclability. J Phys Chem C 2014, 118, 28401-28408. 147.Messing, G.L.; Zhang, S.C.; Jayanthi, G.V. Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 1993, 76, 2707-2726. 148.Shih, S.-J.; Chou, Y.-J.; Chen, C.-Y.; Lin, C.-K. One-step synthesis and characterization of nanosized bioactive glass. J. Med. Biol. Eng 2014, 34, 18-23. 149.Sharma, B. Industrial chemistry. Krishna Prakashan Media: 1991. 150.Seidell, A. Solubilities of inorganic and organic compounds: A compilation of quantitative solubility data from the periodical literature. D. Van Nostrand Company: 1919. 151.Hontoria-Lucas, C.; Lopez-Peinado, A.; López-González, J.d.D.; Rojas-Cervantes, M.; Martin-Aranda, R. Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon 1995, 33, 1585-1592. 152.Shalaby, A.; Nihtianova, D.; Markov, P.; Staneva, A.; Iordanova, R.; Dimitriev, Y. Structural analysis of reduced graphene oxide by transmission electron microscopy. 2015. 153.Zhang, L.; Liu, W.; Yue, C.; Zhang, T.; Li, P.; Xing, Z.; Chen, Y. A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon 2013, 61, 105-115. 154.Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Kim, J.-H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in pseudomonas aeruginosa. Int J Nanomedicine 2012, 7, e14. 155.Kanayama, I.; Miyaji, H.; Takita, H.; Nishida, E.; Tsuji, M.; Fugetsu, B.; Sun, L.; Inoue, K.; Ibara, A.; Akasaka, T. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide. International Journal of Nanomedicine 2014, 9, 3363. 156.Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of graphene oxide. Nanoscale Res Lett 2011, 6, 1.
|