跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 16:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王士豪
研究生(外文):Shih-Hao Wang
論文名稱:含苯并噻二唑之氟化二維共軛高分子之合成及性質探討
論文名稱(外文):Synthesis and Characterization of Fluorinated Two-dimensional Conjugated Polymers Bearing Benzothiadiazole unit for Bulk Heterojunction Solar Cells
指導教授:陳志堅陳志堅引用關係王立義
指導教授(外文):JyhChien ChenLeeYih Wang
口試委員:陳志堅王立義
口試委員(外文):JyhChien ChenLeeYih Wang
口試日期:2016-07-13
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:143
中文關鍵詞:含苯并?二唑二維共軛高分子氟化
外文關鍵詞:BenzothiadiazoleTwo-dimensional Conjugated PolymersFluorinated
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究係於具有三噻吩烯基作為共軛側鏈之二維共軛高分子的主鏈中導入缺電子(A)單元之benzothiadiazole (BTD)單體,並分別與推電子(D)單元之5,5'-bis(trimethylstannyl)-2,2'-bithiophene (BT-bisSn)或(3,3'-difluoro-2,2'-bithiophe
ne-5,5'-diyl)bis(trimethylstannane) (DFBT-bisSn)單體,利用Stille coupling進行共聚合形成三種低能隙共軛高分子(OAP01、OAP02與OAP03),並針對它們的光學、電化學及結晶性質進行分析研究。合成出之中間物、單體以及最終的共軛高分子均應用核磁共振光譜儀(proton nuclear magnetic resonance、carbon-13 nuclear magnetic resonance;1H NMR、13C NMR) 及質譜儀 (mass spectrometry;MS) 對其分子結構進行鑑定,並以凝膠滲透層析 (gel permeation chromatography;GPC) 測得它們的分子量特性。
由於導入D-A單元於共軛主鏈中,三種二維共軛高分子產物之能隙均比poly(3-hexylthiophene) (P3HT)者小,而且也多了側鏈的在短波長處的吸收峰。其中,OAP02具有最窄的能隙,為1.51 eV。因為benzothiadiazole (BTD)單元的存在,它們的HOMO能階均較P3HT低。OAP01透過在推電子單元中導入氟之拉電子官能基來增加電子親和力,以薄膜態測得之HOMO能階為-5.04 eV,OAP02則透過去除隔離物(π-spacer)之方式,使得其HOMO能階為-5.00 eV,OAP03則綜合以上兩點,得到了三者之中最低的HOMO能階,為-5.40 eV。較低之HOMO能階特性將有助於提升太陽能電池元件之開環電壓。在結晶性質的部分,三個高分子均具有良好的lamella方向烷基規則排列,除此之外, OAP01由於導入具高度平面性的DFBT,為當中最具有π-π堆疊性的高分子 (π-π stacking distance:3.64 Å)。初步將OAP01應用為異質混摻 (bulk heterojunction;BHJ) 太陽能電池之電子予體材料,搭配PCBM為電子受體材料,其能量轉換效率 (energy conversion efficiency;PCE) 達6.61 %。實驗結果可讓我們對於benzothiadiazole (BTD) 衍生物之二維共軛高分子、主鏈導入π共軛結構以及導入具有含氟官能基修飾之(3,3'-difluoro-2,2'-bithiophene-5,5'-diyl)bis(trimethylstannane) (DFBT-BisSn) 推電子單元有更進一步的認識與了解,有助於未來設計高性能之有機高分子太陽能材料。
This study focused on developing novel low-bandgap organic materials by copolymerizing an electron-deficient monomer, benzothiadiazole (BTD) anchored with terthiophene-vinylene moieties as conjugated side chains, and an electron-rich monomer, 5,5'-bis(trimethylstannyl)-2,2'-bithiophene (BT-bisSn) or (3,3'-difluoro-2,2'-bithiophene-5,5'-diyl)bis(trimethylstannane) (DFBT-bisSn) with or without two thiophene rings as a conjugated spacer in the backboneviathe Stille polycondensation route toproduce three conjugated polymers, namely OAP01~03, in which 3-(2-octyldodecyl)thiophene moieties were bonded to the BTD unit to increase their solubility as well as molecular weight. All intermediates and final polymer products were structurally characterized by NMR spectroscopy (1H NMR, 13C NMR) and mass spectrometry. Gel permeation chromatography (GPC),X-ray diffraction (XRD) and ultraviolet–visible spectrometer (UV/Vis) were applied to determine these polymers’ molecular weight characteristics, crystallinity and optical properties, respectively. Moreover, their electronic properties were then investigated by cyclic voltammetry (CV) and photoelectron spectroscopy in air (PESA).
目錄
誌謝 II
摘要 III
Abstract V
第一章、緒論 15
1.1 前言 15
1.2 太陽能電池種類 16
1.3高分子太陽能電池 19
1.3.1 高分子太陽能電池之發展 19
1.3.2 高分子太陽能電池之結構 21
1.3.3 高分子太陽能電池之工作原理 22
1.4太陽能電池元件參數 23
1.5文獻回顧 26
1.5.1共軛高分子 26
1.5.2二維共軛高分子(Two-dimension conjugated polymer) 27
1.5.3添加氟原子取代基對共軛高分子之影響 32
1.5.4 Difluorobithiophene於太陽能電池之應用 40
1.6實驗動機與設計 45
單體合成路徑圖(1) 47
單體合成路徑圖(2) 48
單體合成路徑圖(3) 49
高分子合成路徑圖(4) 50
第二章、實驗 51
2.1 實驗所需化學試劑列表 51
2.2 實驗設備及儀器 53
2.2.1 真空系統 (high vacuum system) 53
2.2.2 手套箱 (glove box) 53
2.2.3 微波反應器 (Microwave Reactor) 54
2.2.4 核磁共振光譜儀(Nuclear Magnetic Resonance spectrometer;NMR) 54
2.2.5 質譜儀 (Mass Spectrometer) 54
2.2.6 X光譜繞射儀 (X-ray Diffraction;XRD) 54
2.2.7 紫外光可見光吸收光譜儀(Ultraviolet–Visible Spectrometer;UV/vis) 55
2.2.8凝膠滲透層析 (Gel Permeation Chromatography;GPC) 55
2.2.10 電化學循環伏安法 (cyclic voltammtry;CV) 56
2.2.11 光電子光譜分析儀 (photoelectron spectrometer in air;PESA) 56
2.3 單體合成 57
2.3.1 5-Methylbenzo[c][1,2,5]thiadiazole (1)的合成 57
2.3.2 4,7-Dibromo-5-methylbenzo[c][1,2,5]thiadiazole (2)的合成 58
2.3.3 4,7-Dibromo-5-(bromomethyl)benzo[c][1,2,5]thiadiazole (3)的合成 59
2.3.4 Diisopropyl(4,7-dibromobenzo[c][1,2,5]thiadiazol-5-yl)methyl 60
hosphonate (4)的合成 60
2.3.5 3-Hexylthiophene (5) 的合成 61
2.3.6 Tributyl(4-hexylthiophen-2-yl)stannane (6)的合成 62
2.3.7 Diisopropyl(4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiad 63
iazol-5-yl)methylphosphonate (7)的合成 63
2.3.8 Diisopropyl(4,7-bis(5-bromo-4-hexylthiophen-2-yl)benzo[c][1,2, 64
5]thiadiazol-5-yl)methylphosphonate (8)的合成 64
2.3.9 2,5-Dibromothiophene-3-carbaldehyde (9)的合成 65
2.3.10 9-(Bromomethyl)nonadecane (10)的合成 66
2.3.11 3-(2-Octyldodecyl)thiophene (11)的合成 67
2.3.12 Tributyl(4-(2-octyldodecyl)thiophen-2-yl)stannane (12)的合成 68
2.3.13 4,4''-bis(3-(2-Octyldodecyl))-[2,2':5',2''-terthiophene]-3'-carba 69
ldehyde (13)的合成 69
2.3.14 2,2'-Bithiophene (14)的合成 70
2.3.15 5,5'-bis(Trimethylstannyl)-2,2'-bithiophene (15)的合成 71
2.3.16 3ODT – M1 (16)的合成 72
2.3.17 3ODT – M2 (17)的合成 73
2.4高分子聚合 74
2.4.1 OAP01的聚合 74
2.4.2 OAP02的聚合 75
2.4.3 OAP03的聚合 76
第三章、結果與討論 77
3.1 單體與高分子的合成 77
3.1.1 合成反應 77
3.1.2單體合成討論 80
3.1.3 高分子聚合討論 85
3.2單體與高分子結構鑑定 86
3.2.1 單體結構鑑定 86
3.2.2 高分子結構鑑定 91
3.3 共軛高分子之分子量性質 93
3.4 共軛高分子光學性質 96
3.4.1 共軛高分子溶液態吸收光譜分析 96
3.4.2 共軛高分子薄膜態吸收光譜分析 102
3.5 共軛高分子能階分析 107
3.6 共軛高分子X光繞射圖譜分析 115
3.6.1 一維X光繞射圖譜 115
3.7 光伏特性分析 120
3.7.1異質混摻高分子太陽能電池之光伏特性分析 120
第四章、結論 123
參考文獻 125
附錄 130
(1) Mitch, J. Commercializing low-cost Solar Cells. Chemical & Engineering News 2016, 30-34.
(2) http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
(3) Kallmans, H.; Pope, M. Photovoltaic Effect in Organic Crystals. J. Chem. Phys. 1958, 30, 585.
(4) 林彥豪: 以二噻吩并噻二唑衍生物為主幹之共軛小分子與高分子之合成與性質探討. 國立台灣大學高分子科學與工程學研究所碩士論文, 2014.
(5) Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183-185.
(6) Sariciftci, N. S.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F. Semicounducting polymer-buckminsterfullerene heterojunctions: Diodes, Photodiodes and photovoltaic cells. Appl. Phys. Lett. 1993, 62, 585-587.
(7) G, Yu.; J, Gao.; Hummelen, J.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.
(8) Yuze, Lin.; Yongfang, Li.; Xiaowei, Zhan. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 2012, 41, 4245-4272.
(9) Yen-Ju, Cheng.; Sheng-Hsiung, Yang.; Chain-Shu, Hsu. Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev. 2009, 5868-5923.
(10) Andre, Bessette.; Garry, S.Hanan. Design,synthesis and photophysical studies of dipyrromethene-based material: insights into their applications in organic photovoltaic devices. Chem. Soc. Rev. 2014, 3342-3405.
(11) Scharber, M.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10 % Energy-Conversion Efficiency. Adv. Mater. 2006, 18, 789.
(12) W. Ma.; C. Yang.; X. Gong.; K. Lee.; Heeger. A. J. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Adv. Funct. Mater. 2005, 15, 1617-1622.
(13) Jianhui, Hou.; Lijun, Huo.; Chang, He.; Chunhe, Yang.; Yongfang, Li. Synthesis and Absorption Spectra of Poly(3-(phenylenevinyl)thiophene)s with Conjugated Side Chains. Macromolecules 2006, 39, 594-603.
(14) Zhi-Guo, Zhang.; Siyusn, Zhhang.; Jie, Min.; Chaohua, Chui.; Jing, Zhang.; Maojie, Zhang.;Yongfang, Li. Conjugated Side-Chain Isolated Polythiophene:Synth
esis and Photovoltaic Application. Macromolecules 2012, 45, 113-118.
(15) Sih-Hao, Liao.; Hong-jyun, Jhuo.; Yu-Shen, Cheng.; Show-An, Chen. Fullerene Derivative-Doped Zinc Oxide Nanofilm as the cathode of Inverted Polymer Solar Cells With Low-Bandgap Polymer (PTB7-Th) for High Performance. Adv. Mater. 2013, 25, 4766-4771.
(16) Yongye, Liang.; Danqin, Feng.; Yue, Wu.; Szu-Ting, Tsai.; Gang, Li.; Claire, Ray; Luping, Yu. Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. J. Am. Chem. Soc. 2009, 131, 7792-7799.
(17) Jannic, Wolf.; Federico, Cruciani.; Abdulrahman, E. Ladbban.; Pierre, M. Beauju
ge. Wide Band-Gap 3,4-Difluorothiophene-Based Polymer with 7 % Solar Cell Effici
ency: An Alternative to P3HT. Chem. Mater. 2015, 27, 4184-4187.
(18) Jea-Woong, Jo.; Seunghwan, Bae.; Feng, Liu.; Thomas, P. Russell.; Won-Ho, Jo. Comparison of Two D-A Type Polymers with Each Being Fluorinated on D and A Unit for High Performance Solar Cells. Adv. Funct. Mater. 2015, 25, 120-125.
(19) Jea-Woong, Jo.; Jae-Woong, Jung.; Eui-Hyuk Jung.; Hyungju, Ahn.; Tae-Joo, Shi
n.; Won-Ho Jo. Fluorination on both D and A units in D-A type conjugated copolyme
rs based on difluorobithiophene and benzothiadiazole for highly efficient polymer sol
ar cells. Energy Environ. Sci. 2015, 8, 2427-2434.
(20) Zhenguo, Wang.; Zuojia, Li.; Jiang, Liu.; Jun, Mei.; Kai, Li.; Ying, Li.; Qiang, Peng. Solution-Processable Small Molecules for High-Performance Organic Solar Cells with Rigidly Fluorinated 2,2’-Bithiophene Central Cores. ACS Appl. Mater. Interfaces 2016, 8, 11639-11648.
(21) Shaoqing, Zhang.; Yunpeng, Qin.; Mohammad, A. U.; Bomee, Jang.; Wenchao, Zhao.; Delong, Liu.; Han-Young Woo.; Jianhui, Hou. A Fluorinated Polythiophene Derivative with Stabilized Backbone Conformation for Highly Efficient Fullerene and Non-Fullerene Polymer Solar Cells. Macromolecules 2016, 49, 2993-3000.
(22) Smith, M. B.; Jerry, M. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.). 2007.
(23) Goebel, M. T.; Marvel, C. S. The oxidation of Grignard reagents. J. Am. Chem. Soc. 1933, 55, 1693-1696.
(24) Milstein, D.; Stille, J. K. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J. Am. Chem. Soc.1978, 100, 3636-3638.
(25) Casado, A. L.; Espinet, P. On the Configuration Resulting from Oxidative Addition of RX to Pd(PPh3)4 and the Mechanism of the cis-to-trans Isomerization of [PdRX(PPh3)2] Complexes (R = Aryl, X = Halide). Organometallics 1998, 17, 954-959.
(26) Casado, A. L.; Espinet, P. Mechanism of the Stille Reaction. 1. The Transmetalation Step. Coupling of R1I and R2SnBu3 Catalyzed by trans-[PdR1IL2] (R1 = C6Cl2F3; R2 = Vinyl, 4-Methoxyphenyl; L = AsPh3). J. Am. Chem. Soc.1998, 120, 8978-8985.
(27) Espinet, P.; Echavarren, A. M. The Mechanisms of the Stille Reaction. Angew. Chem. 2004, 43, 4704-4734.
(28) Farina, V.; Krishnamurthy, V.; Scott, W. J. The Stille Reaction. Organic Reactions 2004.
(29) Williams, Dudley H.; Fleming, Lan. Spectroscopic Methods in Organic Chemi
stry; McGraw-Hill Book Company (UK) Limited 1989.
(30) 蕭全佑: 含三噻吩共軛側鏈之聚噻吩高分子:合成、性質及其光伏應用. 國立台灣大學高分子科學與工程學研究所博士論文, 2014.
(31) Y. Li. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption. Acc. Chem. Res. 2012, 45, 723-733.
(32) R. Zhang.; B. Li.; Iovu, M. C.; Jeffries-El, M.; Sauvé, G.; Cooper, J.; S. Jia.; Tristram-Nagle, S.; Smilgies, D. M.; Lambeth, D. N.; McCullough, R. D.; Kowalewski, T. Nanostructure Dependence of Field-Effect Mobility in Regioregular Poly(3-hexylthiophene) Thin Film Field Effect Transistors. J. Am. Chem. Soc. 2006, 128, 3480-3481.
(33) C. Liu.; K. Wang.; X. Hu.; Y. Yang.; C. H. Hsu.; W. Zhang.; S. Xiao.; X. Gong.; Y. Cao. Molecular Weight Effect on the Efficiency of Polymer Solar Cells. ACS Appl. Mater. Interfaces 2013, 5, 12163-12167.
(34) Najari, A.; Beaupré, S.; Berrouard, P.; Zou, Y.; Pouliot, J. R.; Lepage-Pérusse, C.; Leclerc, M. Synthesis and characterization of new thieno[3,4-c]pyrrole-4,6-dione derivatives for photovoltaic applications. Adv. Funct. Mater. 2011, 21, 718-728.
(35) Y. Fu.; H. Cha.; S. Song.; G. Y. Lee.; Eon Park, C.; Park, T. Low-bandgap quinoxaline-based D - A-type copolymers: Synthesis, characterization, and photovoltaic properties. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 372-382.
(36) K. Lu.; J. Fang.; H. Yan.; X. Zhu.; Y. Yi.; Z, Wei. A facile strategy to enhance absorption coefficient and photovoltaic performance of two-dimensional benzo[1,2-b:4,5-b′]dithiophene and thieno[3,4-c]pyrrole-4,6-dione polymers via subtle chemical structure variations. Org. Electron. 2013, 14, 2652-2661.
(37) Z. Ma.; D. Dang.; Z, Tang.; Gedefaw, D.; Bergqvist, J.; W. Zhu.; Mammo, W.; Andersson, M. R.; Inganäs, O.; Zhang, F.; E, Wang. A facile method to enhance photovoltaic performance of benzodithiophene- isoindigo polymers by inserting bithiophene spacer. Adv. Energy Mater. 2014, 4.
(38) Hae-Jung Son.; Wei, Wang.; Tao, Xu.; Yongye, Liang.; Yue, Wu.; Gang, Li.; Luping, Yu. Synthesis of Fluorinated Polythienothiophene-co-benzodithiophenes and Effect of Fluorination on the Photovoltaic Properties. J. Am. Chem. Soc. 2011, 133, 1885-1894.
(39) Youichi, Sakamoto.; Shingo, Komatsu.; Toshiyasu, Suzuki. Tetradecafluorosexi
thiophene: The First Perfluorinated Oligothiophene. J. Am. Chem. Soc. 2001, 123, 4643-4644.
(40) 林宏澤: 含苯並二噻吩單元之共軛高分子合成、分析及其在太陽能電池之應用. 國立台灣科技大學材料工程與科學研究所碩士論文, 2015.
(41) J. C. Chen.; H. C. Wu.; C. J. Chiang.; T. Chen.; L. Xing. Synthesis and properties of air-stable n-channel semiconductors based on MEH-PPV derivatives containing benzo[c]cinnoline moieties. J. Mater. Chem. C. 2014, 2, 4835-4846.
(42) Y, Yao.; H, Dong.; W, Hu. Ordering of conjugated polymer molecules: recent advances and perspectives. Polym. Chem. 2013, 4, 5197-5205.
(43) K, I.; S. K.; K. U.; A. O.; Reddy, S. L.; Endo, T. High Resolution X-Ray Diffraction Analyses of (La,Sr)MnO3/ZnO/Sapphire(0001) Double Heteroepitaxial Films. Adv. Phys. Org. Chem. 2013, 3, 72-89.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top