跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳學毓
研究生(外文):Hsueh-Yu Chen
論文名稱:三維立體基材金屬化技術優化
論文名稱(外文):Development of Metallization Technology for Three Dimensional Substrates
指導教授:王丞浩
指導教授(外文):Chen-Hao Wang
口試委員:王丞浩
口試委員(外文):Chen-Hao Wang
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:104
中文關鍵詞:金屬化無錫雷射聚碳酸酯玻璃
外文關鍵詞:Metallizationtin-freePCglass
相關次數:
  • 被引用被引用:1
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無電鍍銅在基材上為產業界非常重要的應用,可做為導線和抗電磁波之鍍層。無電鍍銅包含三個步驟:(1)化學蝕刻、(2)敏化和活化、(3)無電鍍銅。化學蝕刻是為了有足夠的粗糙度使觸媒附著於基材表面,敏化和活化部分是使無電鍍銅層成長的關鍵步驟。目前業界常用製程包含:基材先用錫鈀膠敏化後,浸泡速化劑活化觸媒;另一種為將銅、鐵、鉻等金屬加入塑料中,直接將觸媒與基材混和後成型(Laser Direct Structuring, LDS)。本研究中將從觸媒與基材改質層面著手,並與以上兩項常用製程由:(1)觸媒適用範圍、(2)鍍銅層厚度、(3)鍍層附著度、(4)鍍層平整度做比較。本研究分為三部分,一為對天線的無電鍍製程改良,藉由聚乙烯醇(PVA)取代錫離子,得到分散均勻、顆粒細小、表面攜帶負電荷之PVA-Pd墨水。其活性約是原始製程的2倍,約是LDS製程的1.5倍。並達到減少原始製程之5個步驟、三種藥劑與一半的觸媒成本。二為新型聚碳酸酯之表面處理,利用紅光雷射尋找最適和本研究之觸媒粗糙度,其附著度已通過百格測試與膠帶測試。三為玻璃基材之表面處理,利用紫外光(UV)雷射處理後,已得到通過百格測試與膠帶測試之鍍層。
Electroless copper plating is an appropriate process in 3C products, and there is a kind of catalysts that plays the most important role in this process called ‘palladium-tin’ colloid. However, it has some disadvantages:
(I) Sn is poisonous to the environment. (II) When Sn2+ reduces palladium ion into palladium, it will become Sn4+ cover on the palladium as the result, the catalytic activity of material is reduced.
This study is divided into three parts: (I) The synthesis of tin-free palladium catalysts. (II) Increasing the surface roughness of PC substrates that can make copper film strongly adhere on it.(III) Increasing the surface roughness of glass substrates that can make copper film strongly adhere on it.
In the first part, Sn is replaced by PVA, palladium ion is reduced by NaBH4. This study tries to optimize different parameters, and parameters with PVA and 3000 ppm Pd get the best results. PVA with 3000 ppm Pd colloid can help copper ion grow faster than Pd/Sn, and get 24 μm copper film in 2 hours(Pd/Sn can only get 10μm in 2 hours.).
In the second part, red laser is applied to roughen the surface of PC, and the adhesion test of copper film is passed.
In the third part, UV laser is applied to roughen the surface of glass, and the adhesion test of copper film is good.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 無電鍍製程應用 2
1-2-1 塑膠電鍍 2
1-2-2 多元合金鍍層 4
1-3 無電鍍銅製程 5
1-3-1 無電鍍銅製程沿革 5
1-3-2 行動裝置天線之無電鍍銅製程具體施行步驟 7
1-4 無電鍍鎳製程 10
1-4-1 無電鍍鎳製程沿革 10
1-4-2 行動裝置天線之無電鍍鎳製程具體施行步驟 11
1-5 研究動機與目的 13
第二章 實驗原理與文獻探討 15
2-1 錫鈀膠製程及其他活化液製程及原理 15
2-1-1 錫鈀膠製程及原理 15
2-1-2 金屬墨水製程 16
2-2 雷射直接成型製程(LDS) 19
2-3 聚碳酸脂表面處理 21
2-3-1 溶漲及化學蝕刻 21
2-3-2 電漿及雷射蝕刻 23
2-3-3 噴砂 24
2-4 玻璃表面處理 25
2-4-1 氫氟酸蝕刻 25
2-4-2 雷射蝕刻 26
2-4-3 被覆緩衝層 27
第三章 實驗步驟與研究方法 29
3-1 實驗規劃 29
3-2 實驗材料及藥品 31
3-3 實驗儀器與設備 32
3-4 實驗步驟 33
3-4-1 活化液備製 33
3-4-2 PC基材處理 33
3-4-3 玻璃基材處理 34
3-4-4 化鍍銅與化鍍鎳 37
3-4-5 百格測試與膠帶附著度測試 38
3-5 分析儀器原理 39
3-5-1 場發射掃描式電子顯微鏡 39
3-5-2 X光繞射分析儀 40
3-5-3 X光螢光光譜儀 42
3-5-4 雷射界面電位分析儀暨粒徑分析儀 44
3-5-5 粗糙度輪廓儀 46
3-5-6 感應耦合電漿原子發射光譜儀 47
第四章 結果與討論 49
4-1 PVA-Pd活化液化鍍製程結果 49
4-1-1 5978 ppm之PVA-Pd化鍍結果 49
4-1-2 5978 ppm之PVA-Pd活化時間 50
4-1-3 不同鈀濃度之PVA-Pd化鍍結果 51
4-1-4 3000 ppm之PVA-Pd之分析與LDS鍍層比較 54
4-1-5 PVA-Pd化鍍銅製程與傳統製程比較 66
4-2 雷射PC參數與PVA-Pd之天線品質測試 68
4-2-1 PC雷射圈數 68
4-2-2 3000 ppm PVA-Pd之天線品質測試 71
4-3 PC基材之酸處理與鹼處理 75
4-4 玻璃基材處理 80
4-4-1 大氣電漿沈積二氧化矽處理 80
4-4-2 UV雷射處理玻璃 83
第五章 結論 85
第六章 參考資料 86
[1] http://goo.gl/ZpWMpQ( Manufacturing Knowledge Center).
[2] http://www.zgdiandu.com.cn/tech/show-42695.html(中國電鍍網).
[3] http://goo.gl/GdSnyb(台灣Word).
[4] H. Meyer, R.J. Nichols, D. Schroer, L. Stamp, Use of conducting polymers and colloids in the through hole plating of printed circuit boards. Electrochimica Acta, 39 (1994) 1325-1338.
[5] Y. Shacham-Diamand, V. Dubin, M. Angyal, Electroless copper deposition for ULSI. Thin Solid Films, 262 (1995) 93-103.
[6] J. Dugasz, A. Szasz, Factors affecting the adhesion of electroless coatings. Surface and Coatings Technology, 58 (1993) 57-62.
[7] Wei Sha, K.G. Keong, Electroless Copper And Nickel-Phosphorus Plating, Woodhead, 2011.
[8] 胡文彬, 難鍍基材的化學鍍鎳技術. 電鍍與環保, 125 (2002) 13-15.
[9] K.G. Keong, W. Sha, S. Malinov, Hardness evolution of electroless nickel-phosphorus deposits with thermal processing. Surface and Coatings Technology, 168 (2003) 263-274.
[10] W.C. Hong, Investigate Process of Electroless Nickel Plating and Study the Surface characteristics of Aluminum. Engineering in Mechanical Engineering, National Kaohsiung University of Applied Sciences (2008).
[11] P.K. Yee, W.T. Wai, Y.F. Khong, in: 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA 2014, June 30, 2014 - July 4, 2014, Institute of Electrical and Electronics Engineers Inc., Singapore, Singapore, 2014, pp. 219-222.
[12] X. Cui, D.A. Hutt, D.J. Scurr, P.P. Conway, The evolution of Pd/Sn catalytic surfaces in electroless copper deposition. Journal of the Electrochemical Society, 158 (2011) D172-D177.
[13] R.L.Cohen, Generative and stabilizing processes in tin-palladium sols and palladium sol sensitizers. electrochemical science and technology, 120 (1973) 502-508.
[14] T. Osaka, A study on activation and acceleration by mixed pdcl2/sncl2 catalysts for electroless metal deposition. electrochemical and science and technology, 127 (1980) 1021-1029.
[15] C. Chen, L. Wang, H. Yu, G. Jiang, Q. Yang, J. Zhou, W. Xiang, J. Zhang, Study on the growth mechanism of silver nanorods in the nanowire-seeding polyol process. Materials Chemistry and Physics, 107 (2008) 13-17.
[16] P. Jiang, S.-Y. Li, S.-S. Xie, Y. Gao, L. Song, Machinable long PVP-stabilized silver nanowires. Chemistry - A European Journal, 10 (2004) 4817-4821.
[17] C.-C. Yang, Y.-Y. Wang, C.-C. Wan, Synthesis and characterization of PVP stabilized Ag/Pd nanoparticles and its potential as an activator for electroless copper deposition. Journal of the Electrochemical Society, 152 (2005) C96-C100.
[18] M.-W. Wang, T.-Y. Liu, D.-C. Pang, J.-C. Hung, C.-C. Tseng, Inkjet printing of a pH sensitive palladium catalyst patterns of ITO glass for electroless copper. Surface and Coatings Technology, 259 (2014) 340-345.
[19] C.-C. Tseng, Y. Lin, T.-Y. Liu, Y.-Y. Nian, M.-W. Wang, M.-D. Ger, The pH-sensitive Pd nanoparticles as ink for ink-jet printing technology and electroless Cu metallic patterns on indium-doped tin oxide substrate. Thin Solid Films, 536 (2013) 81-87.
[20] A. Celebioglu, Z. Aytac, O.C. Umu, A. Dana, T. Tekinay, T. Uyar, One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers. Carbohydr Polym, 99 (2014) 808-816.
[21] N. Mahanta, S. Valiyaveettil, In situ preparation of silver nanoparticles on biocompatible methacrylated poly(vinyl alcohol) and cellulose based polymeric nanofibers. RSC Advances, 2 (2012) 11389.
[22] Y. Zhao, J.A. Baeza, N. Koteswara Rao, L. Calvo, M.A. Gilarranz, Y.D. Li, L. Lefferts, Unsupported PVA- and PVP-stabilized Pd nanoparticles as catalyst for nitrite hydrogenation in aqueous phase. Journal of Catalysis, 318 (2014) 162-169.
[23] H.W. Gerhard Naundorf, Conductor track structures and method for production thereof. Patent, CN1326435 (2007).
[24] Y.W. Chen, Design and Manufacturing of Metallized Plastic Three-dimensional Antenna for Mobile Devices. Department of Mechanical Engineering, National Taiwan University of Science and Technology (2014).
[25] http://goo.gl/Cizy1e (LPKF patent).
[26] P.-C. Wang, Y.-Y. Nian, Z.-Y. Luo, C.-P. Chang, Y.-M. Liu, M.-D. Ger, in: 2013 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference - Green and Cloud: Creating Value and Toward Eco-Life, IMPACT 2013, October 22, 2013 - October 25, 2013, IEEE Computer Society, Taipei, Taiwan, 2013, pp. 263-266.
[27] W. Zhao, Z. Wang, Adhesion improvement of electroless copper to PC substrate by a low environmental pollution MnO2-H3PO4-H 2SO4-H2O system. International Journal of Adhesion and Adhesives, 41 (2013) 50-56.
[28] L.-M. Luo, Z.-L. Lu, X.-M. Huang, X.-Y. Tan, X.-Y. Ding, J.-G. Cheng, L. Zhu, Y.-C. Wu, Electroless copper plating on PC engineering plastic with a novel palladium-free surface activation process. Surface and Coatings Technology, 251 (2014) 69-73.
[29] L. Dong, R. Greco, G. Orsello, Polycarbonate/acrylonitrile-butadiene-styrene blends: 1. Complementary etching techniques for morphology observations. Polymer, 34 (1993) 1375-1382.
[30] D. Hegemann, H. Brunner, C. Oehr, in: Ionizing Radiation and Polymers, September 21, 2002 - September 26, 2002, Elsevier, Sainte-Adele, QUE, Canada, 2003, pp. 281-286.
[31] A. Paproth, K.J. Wolter, R. Deltschew, in: IEEE 56th Electronic Components and Technology Conference, May 30, 2006 - June 2, 2006, Institute of Electrical and Electronics Engineers Inc., San Diego, CA, United states, 2006, pp. 959-963.
[32] H. Frerichs, J. Stricker, D.A. Wesner, E.W. Kreutz, Laser-induced surface modification and metallization of polymers. Applied Surface Science, 86 (1995) 405-410.
[33] W. Pfleging, R. Adamietz, H.J. Bruckner, M. Bruns, A. Welle, in: Laser-based Micro- and Nanopackaging and Assembly, January 22, 2007 - January 24, 2007, SPIE, San Jose, CA, United states, 2007, pp. SPIE.
[34] http://goo.gl/YlgVRv(新竹市玻璃工藝博物館知識網).
[35] 楊隆昌, 雷射發展的趨勢與應用. 中工高雄會刊, 22 (2014) 23-33.
[36] G. Allcock, P.E. Dyer, G. Elliner, H.V. Snelling, Experimental observations and analysis of CO2 laser-induced microcracking of glass. Journal of Applied Physics, 78 (1995) 7295.
[37] J. Xu, Y. Liao, H. Zeng, Z. Zhou, H. Sun, J. Song, X. Wang, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, in: Lasers in Material Processing and Manufacturing III, November 12, 2007 - November 14, 2007, SPIE, Beijing, China, 2008, pp. Society of Photo-Optical Instrumentation Engineers (SPIE); Chinese Optical Society (COS).
[38] B. He, D.P. Webb, J. Petzing, R. Leach, in: 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP 2011, August 8, 2011 - August 11, 2011, IEEE Computer Society, Shanghai, China, 2011, pp. 284-288.
[39] W. Su, L. Yao, F. Yang, P. Li, J. Chen, L. Liang, Electroless plating of copper on surface-modified glass substrate. Applied Surface Science, 257 (2011) 8067-8071.
[40] A. Rhallabi, G. Turban, Study of the early stage of SiO2 growth by a TEOS-O2 plasma mixture using a three-dimensional Monte Carlo model. Journal of Vacuum Science and Technology, Part A: Vacuum, Surfaces and Films, 19 (2001) 743-749.
[41] S.-H. Yang, C.-H. Liu, C.-H. Su, H. Chen, Atmospheric-pressure plasma deposition of SiOx films for super-hydrophobic application. Thin Solid Films, 517 (2009) 5284-5287.
[42] http://goo.gl/tzkXyt (Fischer).
[43] http://goo.gl/rPb79z (Dynamic light scattering).
[44] http://goo.gl/Z3zWth (Malvern).
[45] http://goo.gl/0vWTH8(機械科、模具科製圖實習 第十章 基本工作圖).
[46] J. Hwang, W.Y. Yoon, J.Y. Byun, S.H. Kim, in: Special Edition Title: Special Issue on 2012 OPU-KIST-ECUST Joint Symposium on Advanced Materials and their Applications, Springer Netherlands, Van Godewijckstraat 30, Dordrecht, 3311 GZ, Netherlands, 2014, pp. 57-65.
[47] R. Kubo, Electronic Properties of Metallic Fine Particles. I. Journal of the Physical Society of Japan, 17 (1962) 975-986.
[48] https://goo.gl/bsNOA9(wiki).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top