跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7358:9a99:61b8:7c06) 您好!臺灣時間:2025/01/19 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱姵嘉
研究生(外文):Pei-Jia Ciou
論文名稱:含苯並噻二唑及3,4-乙烯二氧噻吩單元之四苯基乙烯分子合成及性質鑑定與其應用於金屬感測器之探討
論文名稱(外文):Synthesis and Characterization of Benzothiadiazole and Ethylenedioxythiophene Derivatives Containing Tetraphenylethene Units and Their Potential Use in Chemosensors
指導教授:游進陽
指導教授(外文):Chin-Yang Yu
口試委員:游進陽
口試委員(外文):Chin-Yang Yu
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:100
中文關鍵詞:四苯基乙烯聚集誘導發光金屬感測器
外文關鍵詞:tetraphenylethyleneaggregation induced emissionchemosensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般可自由旋轉螢光分子在固態時常受聚集螢光淬滅效應(Aggregation caused quenching)的影響,熒光會大幅度的銳降。四苯基乙烯(Tetraphenylethene)為著名的發光基團,特別是在聚集態時,其熒光與一般可自由旋轉螢光分子不同不降反升,這種聚集使螢光增強 (Aggregation induced emission)的性質,在過去幾年內受到極大關注,因其可應用在多種領域,例如:發光元件、化學感測器和刺激響應元件等,四苯基乙烯作為具有AIE活性的官能基團廣泛地被研究。

Benzothiadiazole (BT)和ethylenedioxythiophene (EDOT)具有良好的電化學以及光學特性,已被廣泛應用在有機光電元件中,其中BT為強拉電子基,EDOT則為強推電子基。本研究將BT和EDOT衍生物作為推拉電子官能基,經由鈀金屬化合物催化鈴木耦合反應與TPE合成出目標分子,並進行光學性質的測定,包含紫外光-可見光吸收光譜及螢光光譜,討論目標分子之聚集態與螢光強度之關聯以及目標分子應用於金屬感測器上之測定。
The conventional fluorescent molecules suffer from aggregation caused quenching (ACQ) which leads to poor emission in the solid state. Tetraphenylethene (TPE) is a well-known luminophore and in particular is highly emission in the aggregated state. Aggregation induced emission (AIE) has attracted much attention in recent years due to its potential uses in the field of electroluminescent elements, chemical sensors and stimuli-responsive elements. TPE has been widely used to construct AIE-active materials owing to its good AIE performance and feasible preparation.

Benzothiadiazole (BT) and ethylenedioxythiophene (EDOT) were widely used as fluorophores for organic electroluminescent elements due to their unique electronic and optical properties. Herein, we have synthesized a series of TPE-based derivatives containing an electron deficient unit, BT, and an electron donating unit, EDOT, by palladium-catalyzed Suzuki cross-coupling reaction. The optical properties of the resulting molecules were determined by UV-vis absorption and photoluminescence spectroscopy. The relationship between ACQ/AIE effects related to the molecular structure and the potential of the designed derivatives in chemosensors are reported in this thesis.
Abstract I
中文摘要 II
List of content III
Chapter 1. Introduction and Aims 1
1.1 Introduction 2
1.2 Conjugated molecules 3
1.3 Band theory of solid 4
1.4 Aggregation-caused quenching 6
1.5 Aggregation-induced emission 8
1.5.1 Introducion to aggregation-caused emission 8
1.5.2 Restriction of intramolecular motion 10
1.6 Introduction to chemosensors 12
1.6.1 Chemosensors 12
1.6.2 The mechanism of analytes detection 13
1.7 Introduction to tetraphenylethene, benzothiadiazole and ethylenedioxythiophene units 15
1.7.1 Tetraphenylethenes 15
1.7.2 Benzothiadiazoles 17
1.7.3 Ethylenedioxythiophenes 19
1.8 Aims of the project 20
1.9 References 21
Chapter 2. Results and Discussion 23
2.1. Synthesis and characterization 24
2.1.1 Synthetic route to BT and EDOT derivatives 24
2.1.2. Synthetic route to TPE derivatives 28
2.1.3. Synthesis of the designed compounds 31
2.2. Optical properties 38
2.2.1 UV-vis and PL spectra 38
2.2.2. Investigation of AIE properties 39
2.2.3. Responsive properties of molecules on metal ions 42
2.3. References 51
Chapter 3. Conclusions 53
Chapter 4 Exerimental Section 55
4.1 General procedures 56
4.2 Synthesis 57
4.2.1 Synthesis of 2-(tributylstannyl)thiazole (1) 57
4.2.2 Synthesis of 4,7-di(thiazol-2-yl)benzo[c][1,2,5]thiadiazole (2) 57
4.2.3 Synthesis of 5,7-di(thiazol-2-yl)-2,3-dihydrothieno[3,4-b][1,4]dioxine (3) 58
4.2.4 Synthesis of 4-(5-bromothiazol-2-yl)-7-(thiazol-2-yl)benzo[c][1,2,5]thiadiazole (4) 58
4.2.5 Synthesis of 5-bromo-2-(7-(thiazol-2-yl)-2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)thiazole (5) 59
4.2.6 Synthesis of 1,2-Bis(4-bromophenyl)-1,2-diphenylethene (6) 60
4.2.7 Synthesis of 2,5-dioctyloxy-1,4-xylene-bis(triphenylphosphonium)dibromide (7) 61
4.2.8 Synthesis of 1-(4-bromophenyl)-1,2,2-triphenylethan-1-ol (8) 62
4.2.9 Synthesis of (2-(4-bromophenyl)ethene-1,1,2-triyl)tribenzene (9) 62
4.2.10 Synthesis of (2-(4-bromophenyl)ethene-1,1,2-triyl)tribenzene (10) 63
4.2.11 Synthesis of 1,2-diphenyl-1,2-bis(4-(2-(7-(thiazol-2-yl)benzo[c]- [1,2,5]thiadiazol-4-yl)thiazol-5-yl)phenyl)ethane (BT-EDOT-BT) 64
4.2.12 Synthesis of 1,2-diphenyl-1,2-bis(4-(2-(7-(thiazol-2-yl) 2,3-dihydrothieno- [3,4-b][1,4]dioxin-5-yl)thiazol-5-yl)phenyl)ethene (EDOT-TPE-EDOT) 65
4.2.13 Synthesis of 4-(thiazol-2-yl)-7-(5-(4-(1,2,2-triphenylvinyl) phenyl)thiazol-2- yl)benzo[c][1,2,5]thiadiazole (TPE-BT) 65
4.2.14 Synthesis of 2-(7-(thiazol-2-yl)-2,3-dihydrothieno[3,4-b][1,4] dioxin-5-yl)-5- (4-(1,2,2-triphenylvinyl)phenyl)thiazole (TPE-EDOT) 66
Appendix 68
1. (a) Du, X.; Wang, Z. Y., Chem. Commun. 2011, 47 , 4276.; (b) Hong, Y.; Lam, J. W. Y.; Tang, B. Z.; Chem. Commun. 2009, 4332.; (c) Kokado, K.; Chujo, Y., Macromolecules. 2009, 42, 1418.; (d) Qin, A.; Lam, J. W. Y.; Tang, L., Jim, C. K.W.; Zhao, J.H.; Sun, J.; Tang, B. Z., Macromolecules. 2009, 42, 1421.; (e) Tang, W.; Xiang, Y.; Tong, A., J. Org. Chem. 2009, 74, 2163.
2. (a) Hou, L.; Chen, H. Y.; Hou, J.; Chen, T. L.; Yang, Y., Chem. Commun. 2009, 37, 5570.; (b) Raimundo, J. M.; Blanchard, P.; Brisset, H.; Aloudad, S.; Roncali, J., Chem. Commun. 2000, 11, 939.
3. (a) Sato, Y.; Ichinosawa, S.; Kanai, H., IEEE J Sel Top Quantum Electr. 1998, 4, 40.; (b) Tang, C. W.; Vanslyke, S. A.; Appl. Phys. Lett. 1987, 51, 913.
4. Cornil, J.; Beljonne, D.; Calbert, J.; Bredas, J., Adv. Mater. 2001, 14, 1053.
5. Th. Förster; K. Kasper., Z. physik. Chem. 1955, 59, 976.
6. Birks, J. B.; Photophysics of Aromatic Molecules, Wiley, London, 1970.
7. Hong, Y.; Lam, J. W. Y.; Tang, B. Z.; Chem. Soc. Rev. 2011, 40, 5361.
8. Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Kiu, Y.; Zhuc, D.; Tang, B. Z., Chem. Commun. 2001, 1740.
9. Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z., Adv. Mater. 2014, 26, 5429.
10. (a) Li, S.; Wang, Q.; Qian, Y.; Wang, S.; Li, Y.; Yang, G., J. Phys. Chem. A. 2007, 111, 11793.; (b) Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z., Chem. Mater. 2003, 15, 1535.; (c) Fan, X.; Sun, J.; Wang, F.; Chu, Z.; Wang, P.; Dong, Y.; Hu, R.; Tang, B. Z.; Zou, D., Chem. Commun. 2008, 2989.
11. (a) Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J., J. Am. Chem. Soc. 2007, 129, 9333.; (b) Peng, Q.; Yi, Y.; Shuai, Z., J. Chem. Phys. 2007, 126, 114302.
12. (a) Shultz, D. A.; Fox, M. A., J. Am. Chem. Soc. 1989, 111, 6311.; (b) Schilling, C. L.; Hilinski, E. F., J. Am. Chem. Soc. 1988, 110, 2296.; (c) Waldeck, D. H., Chem. Rev. 1991, 91. 415.; (d) Saltiel, J.; D'Agostino, J. T., J. Am. Chem. Soc. 1972, 94, 6445.
13. Wang, J.; Mei, J.; Hu, R.; Sun, J. Z.; Qin, A.; Tang, B. Z., J. Am. Chem. Soc. 2012, 134, 9956.
14. Tomas III, S. W.; Joly, G. D.; Swager, T. M., Chem. Rev. 2000, 100, 2537.
15. Lehn, J. M., Angew. Chem. Int. Ed. 1990, 29, 1304.
16. (a) Fegley, M. E. A.; Pinnock, S. S.; Malele, C. N.; Jones Jr, W. E., Inorg. Chim. Acta. 2012, 381, 78.; (b) Fan, L. J.; Zhang, Y.; Jones Jr, W. E., Macromolecules. 2005, 38, 2844.
17. Zhao, Z.; Lam, J. W. Y.; Tang, B. Z., Current Organic Chemistry. 2010, 14, 2109.
18. Dennler, G.; Scharber, M. C.; Brabec, C. J., Adv. Mater. 2009, 21, 1323.
19. Blouin, N.; Michaud, A.; Leclerc, M., Adv. Mater. 2007, 19, 2295.
20. Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C., Nature Mater. 2007, 6, 497.
21. (a) Pepitone, M. F.; Eaiprasertsak, K.; Hardaker, S. S.; Gregory, R. V., Org. Lett. 2003, 5, 3229.; (b) Pepitone, M. F.; Hardaker, S. S.; Gregory, R. V., Chem. Mater. 2003, 15, 557.
22. Aldakov, D.; Anzenbacher, J. P., Chem. Commun. 2003, 12, 1394.
23.Chavez, p.; Ngov, C.; Fremont, P.; Leveque, P.; Leclerc, N., J. Org. Chem. 2014, 79, 10179.
24.Lee, J. Y.; Song, K. W.; Song, H. J., Moon, D. K., Synth. Met. 2011, 161, 2434.
25.Bai, W.; Wang, Z.; Tong, J.; Mei, J.; Qin, A.; Sun, J. Z.; Tang, B. Z., Chem. Commun. 2015, 51, 1089.
26.Misra, R.; Jadhav, T.; Dhokale, B.; Mobin, S. M., Chem. Commun.2014, 50, 9076.
27.Ding, L.; Lin, L.; Liu, C.; Li, H.; Qin, A; Liu, Y.; Song, L.; Zhang, H.; Tang, B. Z.; Zhao, Y., New J. Chem. 2011, 35, 1781.
28.(a) Chen, C. H.; Hsieh, C. H.; Dubosc, M.; Cheng, Y. J.; Hsu, C. S., Macromolecules. 2010, 43, 697; (b) Zhou, P.; Zhang, Z. G.; Li, Y.; Chen, X.; Qin, J., Chem. Mater. 2014, 26, 3495.
29.(a) Lapkowski, M.; Pron, A., Synth. Met. 2000, 110, 79.; (b) Dkhissi, A.; Louwet, F.; Groenendaal, L.; Beljonne, D.; Lazzaroni, R.; Bredas, J. L., Chem. Phys. Lett. 2002, 359, 466.
30.Yu, C. Y.; Chen, P. Y.; Lin, Y. H.; Ciou, P. J., J. Appl. Polym. Sci. 2015, 132, 42795.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top