跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳瀚宇
研究生(外文):Han-Yu Chen
論文名稱:新型聚醚砜之合成與在鹼性陰離子交換膜燃料電池之應用
論文名稱(外文):Synthesis of novel polyethersulfone and application on alkaline anion exchange membrane fuel cell
指導教授:陳志堅陳志堅引用關係
指導教授(外文):Jyh-Chien Chen
口試委員:陳志堅
口試委員(外文):Jyh-Chien Chen
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:75
中文關鍵詞:聚醚砜陰離子交換膜限制性旋轉掌性軸
外文關鍵詞:polyethersulfoneanion exchange membranerestricted rotationchiral axial
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以2,2’-dimethyl-4,4’-biphenyldiamine (m-tolidine)為起始物經重氮化水解合成二醇單體2,2’-dimethyl-4,4’-biphenyldiol。以DMAc為溶劑與4,4'-dichlorodiphenyl sulfone聚合成新型聚醚砜PES-DM。其數目平均分子量約為10萬。並進一步將甲基溴化,而溴化後之分子量介於90至100 KDa之間。此外我們於溴化的過程中發現PES-DM之聯苯結構會因2,2’位產生較大的立體障礙,而產生限制性旋轉,使其產生光學活性。而我們以DFT理論計算得到單邊溴化與雙邊溴化之PES-DM其旋轉能量障礙分別為76.34與78.58 KJ/mol。而在溴化後分別以1-methyl piperidine、1,2-dimethyl imidazole與trimethyl amine進行四級銨化並比較不同四級銨鹽基團之穩定性,分別為PES-DM-MP、PES-DM-DI及PES-DM-QA。其中以PES-DM-QA在1 M 80 oC氫氧化鈉水溶液中72小時後展現最佳之穩定性。我們將IEC值控制於0.8、1.4及1.8 mmol/g ,合成薄膜PES-DM-0.8QA、PES-DM-1.4QA及PES-DM-1.8QA。其於100 oC前無熱中損失,展現良好之熱穩定性。PES-DM-1.4QA及PES-DM-1.8QA在60 oC 1 M氫氧化鈉水溶液中經過鹼性穩定性測試後,其傳導率在168小時後下降至10.16與17.51 mS/cm。而PES-DM-0.8QA、PES-DM-1.4QA及PES-DM-1.8QA在60 oC之陰離子傳導率分別為2.53、13.33、29.35 mS/cm,在80 oC下分別為5.97、25.29及51.40 mS/cm。
Novel diol monomer 2,2’-dimethyl-4,4’-biphenyldiol was successfully synthesized via diazotization and hydrolysis from 2,2’-dimethyl-4,4’-biphenyldiamine (m-Tolidine). Novel polyethersulfone PES-DM were synthesized from 2,2’-dimethyl-4,4’-biphenyldiol and dichlorodiphenyl sulfone using DMAc as reaction solvent. PES-DM was brominated by N-bromosuccinimide (NBS) benzyl peroxide (BPO). Number-averaged molecular weight measured by GPC of PES-DM and PES-DM-Br were both around 100 KDa meaning there was no cleavage in the main chain of PES-DM after bromination. On the other hand, PES-DM-Br showed a chiral property due to the limited rotation of bulky substituent. We calculated the rotation barrier of single bromomethyl PES-DM and double bromomethyl PES-DM by DFT theory exhibiting 76.34 and 78.58 KJ/mol , respectively. PES-DM-Br were quaterized by 1-methyl piperidine(PES-DM-MP)、1,2-dimethyl imidazole(PES-DM-DI) and trimethyl amine(PES-DM-QA), They were then immersed in 1M NaOH solution at 80 oC to determine their alkaline stability. PES-DM-QA exhibited the most outstanding alkaline stability so we varied it’s IEC value from 0.8 to 1.8 mmol/g assigning for PES-DM-0.8QA, PES-DM-1.4QA and PES-DM-1.8QA, respectively. No weight loss was detected before 100 oC. Demonstrated great thermal stability for alkaline anion exchange membrane. Alkaline stability were tested in 1 M NaOH solution at 60 oC for 168 hr. PES-DM-1.4QA and PES-DM-1.8QA showed 10.16 and 17.51 mS/cm in conductivity. Conductivity of PES-DM-0.8QA, PES-DM-1.4QA, PES-DM-1.8QA at 60 oC were 2.53、13.33 and 29.35 mS/cm, respectively, and were 5.97、25.29 and 51.40 at 80 oC, respectively.
中文摘要 I
Abstract II
致謝 III
目錄 IV
Figure 索引 VI
Scheme 索引 VIII
Table 索引 IX
第一章 緒論 1
1.1 前言 1
1.2 燃料電池之類型 2
1.3 燃料電池之發電原理與構造 3
1.4 質子與陰離子交換膜之發展 6
1.4.1 質子交換膜 6
1.4.2 陰離子交換膜 8
1.4.3 鹼性安定度與降解機制 15
1.5 聚醚砜之介紹 22
1.5.1 聚醚砜的應用 22
1.5.2 聚醚砜之合成 22
1.6 研究目的與動機 25
第二章 實驗部分 26
2.1 實驗藥品 26
2.2 實驗儀器 27
2.3 單體與模型分子之合成 28
2.3.1 二醇單體2,2’-dimethyl-4,4’-biphenyldiol之合成 28
2.3.2 模型分子2,2’-dimethyl-4,4’-bis(4-nitrophenoxy)-1,1’-biphenyl之合成 28
2.3.3 新型聚醚砜PES-DM之合成 29
2.3.4 新型聚醚砜之溴化 30
2.3.5 聚醚砜之四級銨化 30
2.4 聚醚砜薄膜之製備 31
第三章 結果與討論 32
3.1 二醇單體與模型分子之合成與性質表徵 32
3.1.1 二醇單體2,2’-dimethyl-4,4’-biphenyldiol 32
3.1.2 模型分子2,2’-dimethyl-4,4’-bis(4-nitrophenoxy)-1,1’-biphenyl 34
3.2 聚醚砜之合成與性質表徵 37
3.3 聚醚砜之溴化與性質表徵 38
3.4 聚醚砜之四級銨化與性質表徵 49
3.5 鹼性安定性與陰離子傳導率 50
3.6 醚砜之熱性質 55
3.7 聚醚砜之尺寸安定性與機械性質 56
3.7.1 聚醚砜之尺寸安定性 56
3.7.2 聚醚砜之機械性質 57
第四章 結論 59
參考文獻 60
(1)Dupuis, A.-C. Progress in Materials Science 2011, 56, 289.
(2)He, Q.; Cairns, E. J. Journal of The Electrochemical Society 2015, 162, F1504.
(3)Asensio, J. A.; Sanchez, E. M.; Gomez-Romero, P. Chem Soc Rev 2010, 39, 3210.
(4)黃振江 燃料電池(修訂版) 2005.
(5)Zhuo, Y. Z.; Lai, A. L.; Zhang, Q. G.; Zhu, A. M.; Ye, M. L.; Liu, Q. L. J. Mater. Chem. A 2015, 3, 18105.
(6)García-Nieto, D.; Barragán, V. M. Electrochimica Acta 2015, 154, 166.
(7)Grew, K. N.; Chiu, W. K. S. Journal of The Electrochemical Society 2010, 157, B327.
(8)Kreuer, K.-D.; Paddison, S. J.; Spohr, E.; Schuster, M. Chemical Reviews 2004, 104, 4637.
(9)Weber, A. Z.; Newman, J. Journal of The Electrochemical Society 2004, 151, A326.
(10)Tuckerman, M. E.; Marx, D.; Parrinello, M. Nature 2002, 417, 925.
(11)Kong, X.; Wadhwa, K.; Verkade, J. G.; Schmidt-Rohr, K. Macromolecules 2009, 42, 1659.
(12)Salerno, H. L. S.; Beyer, F. L.; Elabd, Y. A. Journal of Polymer Science Part B: Polymer Physics 2012, 50, 552.
(13)Salerno, H. L. S.; Elabd, Y. A. Journal of Applied Polymer Science 2013, 127, 298.
(14)Jung, M.-s. J.; Arges, C. G.; Ramani, V. Journal of Materials Chemistry 2011, 21, 6158.
(15)Vandiver, M. A.; Horan, J. L.; Yang, Y.; Tansey, E. T.; Seifert, S.; Liberatore, M. W.; Herring, A. M. Journal of Polymer Science Part B: Polymer Physics 2013, 51, 1761.
(16)Qiao, J.; Zhang, J.; Zhang, J. Journal of Power Sources 2013, 237, 1.
(17)Zhou, J.; Guo, J.; Chu, D.; Chen, R. Journal of Power Sources 2012, 219, 272.
(18)Yan, X.; Gu, S.; He, G.; Wu, X.; Benziger, J. Journal of Power Sources 2014, 250, 90.
(19)Zhang, N.; Wang, B.; Zhao, C.; Wang, S.; Zhang, Y.; Bu, F.; Cui, Y.; Li, X.; Na, H. Journal of Materials Chemistry A 2014, 2, 13996.
(20)Li, N.; Leng, Y.; Hickner, M. A.; Wang, C. Y. J Am Chem Soc 2013, 135, 10124.
(21)Lin, X.; Liang, X.; Poynton, S. D.; Varcoe, J. R.; Ong, A. L.; Ran, J.; Li, Y.; Li, Q.; Xu, T. Journal of Membrane Science 2013, 443, 193.
(22)Rewar, A. S.; Bhavsar, R. S.; Sreekumar, K.; Kharul, U. K. Journal of Membrane Science 2015, 481, 19.
(23)Koilpillai, S. S.; Dharmalingam, S. International Journal of Energy Research 2015, 39, 317.
(24)Chen, J.-C.; Wu, J.-A.; Chen, K.-H. RSC Adv. 2016, 6, 33959.
(25)Zhang, H. W.; Chen, D. Z.; Xianze, Y.; Yin, S. B. Fuel Cells 2015, 15, 761.
(26)Pan, J.; Chen, C.; Li, Y.; Wang, L.; Tan, L.; Li, G.; Tang, X.; Xiao, L.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2014, 7, 354.
(27)Wang, J.; Wang, J.; Zhang, S. Journal of Membrane Science 2012, 415-416, 205.
(28)Chikh, L.; Delhorbe, V.; Fichet, O. Journal of Membrane Science 2011, 368, 1.
(29)Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K.; Xu, T.; Zhuang, L. Energy Environ. Sci. 2014, 7, 3135.
(30)Mohanty, A. D.; Lee, Y.-B.; Zhu, L.; Hickner, M. A.; Bae, C. Macromolecules 2014, 47, 1973.
(31)Tanaka, M.; Fukasawa, K.; Nishino, E.; Yamaguchi, S.; Yamada, K.; Tanaka, H.; Bae, B.; Miyatake, K.; Watanabe, M. J Am Chem Soc 2011, 133, 10646.
(32)Li, N.; Yan, T.; Li, Z.; Thurn-Albrecht, T.; Binder, W. H. Energy & Environmental Science 2012, 5, 7888.
(33)Ran, J.; Wu, L.; Lin, X.; Jiang, L.; Xu, T. RSC Advances 2012, 2, 4250.
(34)Ge, Q.; Ran, J.; Miao, J.; Yang, Z.; Xu, T. ACS Appl Mater Interfaces 2015, 7, 28545.
(35)Cope, A. C.; Trumbull, E. R. In Organic Reactions; John Wiley & Sons, Inc.: 2004.
(36)Marino, M. G.; Melchior, J. P.; Wohlfarth, A.; Kreuer, K. D. Journal of Membrane Science 2014, 464, 61.
(37)Yanagi, H.; Fukuta, K. ECS Transactions 2008, 16, 257.
(38)Kizewski, J.; Mudri, N.; Zeng, R.; Poynton, S.; C. T. Slade, R.; Varcoe, J. R. ECS Transactions 2010, 33, 27.
(39)Chempath, S.; Boncella, J. M.; Pratt, L. R.; Henson, N.; Pivovar, B. S. The Journal of Physical Chemistry C 2010, 114, 11977.
(40)Cope, A. C.; Mehta, A. S. Journal of the American Chemical Society 1963, 85, 1949.
(41)Chempath, S.; Einsla, B. R.; Pratt, L. R.; Macomber, C. S.; Boncella, J. M.; Rau, J. A.; Pivovar, B. S. The Journal of Physical Chemistry C 2008, 112, 3179.
(42)Einsla, B. R.; Chempath, S.; Pratt, L.; Boncella, J.; Rau, J.; Macomber, C.; Pivovar, B. ECS Transactions 2007, 11, 1173.
(43)Yang, Y.; Wang, J.; Zheng, J.; Li, S.; Zhang, S. Journal of Membrane Science 2014, 467, 48.
(44)Kelemen, Z.; Péter-Szabó, B.; Székely, E.; Hollóczki, O.; Firaha, D. S.; Kirchner, B.; Nagy, J.; Nyulászi, L. Chemistry – A European Journal 2014, 20, 13002.
(45)Hollóczki, O.; Terleczky, P.; Szieberth, D.; Mourgas, G.; Gudat, D.; Nyulászi, L. Journal of the American Chemical Society 2011, 133, 780.
(46)Wang, Y.-B.; Wang, Y.-M.; Zhang, W.-Z.; Lu, X.-B. Journal of the American Chemical Society 2013, 135, 11996.
(47)Hugar, K. M.; Kostalik, H. A. t.; Coates, G. W. J Am Chem Soc 2015, 137, 8730.
(48)Qiu, B.; Lin, B.; Qiu, L.; Yan, F. J. Mater. Chem. 2012, 22, 1040.
(49)Ye, Y.; Elabd, Y. A. Macromolecules 2011, 44, 8494.
(50)Chen, D.; Hickner, M. A. ACS Appl Mater Interfaces 2012, 4, 5775.
(51)Deavin, O. I.; Murphy, S.; Ong, A. L.; Poynton, S. D.; Zeng, R.; Herman, H.; Varcoe, J. R. Energy & Environmental Science 2012, 5, 8584.
(52)Neagu, V.; Bunia, I.; Plesca, I. Polymer Degradation and Stability 2000, 70, 463.
(53)Sata, T.; Tsujimoto, M.; Yamaguchi, T.; Matsusaki, K. Journal of Membrane Science 1996, 112, 161.
(54)Zschocke, P.; Quellmalz, D. Journal of Membrane Science 1985, 22, 325.
(55)Matsui, K.; Tobita, E.; Sugimoto, K.; Kondo, K.; Seita, T.; Akimoto, A. Journal of Applied Polymer Science 1986, 32, 4137.
(56)Danks, T. N.; Slade, R. C. T.; Varcoe, J. R. Journal of Materials Chemistry 2002, 12, 3371.
(57)Danks, T. N.; Slade, R. C. T.; Varcoe, J. R. Journal of Materials Chemistry 2003, 13, 712.
(58)Johnson, R. N.; Farnham, A. G.; Clendinning, R. A.; Hale, W. F.; Merriam, C. N. Journal of Polymer Science Part A-1: Polymer Chemistry 1967, 5, 2375.
(59)Attwood, T. E.; Barr, D. A.; Feasey, G. G.; Leslie, V. J.; Newton, A. B.; Rose, J. B. Polymer 1977, 18, 354.
(60)Attwood, T. E.; Barr, D. A.; King, T.; Newton, A. B.; Rose, J. B. Polymer 1977, 18, 359.
(61)Gaetano F. D'Alelio, d.; U.S. Patents 4517354: 1985.
(62)Imai, Y.; Ueda, M.; Ii, M. Journal of Polymer Science: Polymer Letters Edition 1979, 17, 85.
(63)Kricheldorf, H. R.; Bier, G. Journal of Polymer Science: Polymer Chemistry Edition 1983, 21, 2283.
(64)Zhao, C.; Ma, W.; Sun, W.; Na, H. Journal of Applied Polymer Science 2014, 131, 40256.
(65)Nasipuri, D. Stereochemistry of Organic Compounds: Principles and Applications; Wiley Eastern Limited, 1994.
(66)Wolf, C. Dynamic Stereochemistry of Chiral Compounds: Principles and Applications; The Royal Society of Chemistry, 2008.
(67)Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew Chem Int Ed Engl 2005, 44, 5384.
(68)Kalsi, P. S. Stereochemistry Conformation and Mechanism; New Age International (P) Limited, 2008.
(69)Casarini, D.; Lunazzi, L.; Mancinelli, M.; Mazzanti, A.; Rosini, C. The Journal of Organic Chemistry 2007, 72, 7667.
(70)Johnstone, T. C.; Lippard, S. J. J Am Chem Soc 2014, 136, 2126.
(71)Meca, L.; Řeha, D.; Havlas, Z. The Journal of Organic Chemistry 2003, 68, 5677.
電子全文 電子全文(網際網路公開日期:20260823)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top