跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳詩堯
研究生(外文):CHEN, SHIH-YAO
論文名稱:不同金屬閘極對多重鰭數N型鰭式場效電晶體之可靠度研究
論文名稱(外文):Impact of Metal-Gate on Device Performance and Reliability of Multi-Fin nFinFETs
指導教授:葉文冠葉文冠引用關係
指導教授(外文):YEH, WEN-KUAN
口試委員:葉文冠楊宜霖林成利
口試委員(外文):YEH, WEN-KUANYANG, YI-LINLIN, CHENG-LI
口試日期:2016-07-07
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:110
中文關鍵詞:鰭式場效電晶體熱載子效應多重鰭結構耦合效應氮化鈦氮化鉭偶極子
外文關鍵詞:FinFEThot carrier effectmulti-fincoupling effectTiNTaNdipole
相關次數:
  • 被引用被引用:15
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
為了追求更好的電性及可靠度,元件閘極材料及結構不斷做改變,鰭式場效電晶體的發展漸取代了傳統平面場效電晶體。本論文中我們對通道長度20nm的N型鰭式場效電晶體進行研究。
鰭式場效電晶體從雙閘極與三閘極的單鰭結構發展到本論文所探討的新型多重鰭結構,我們研究發現多重鰭結構在單一通道下,閘極對通道的控制能力略差於單鰭結構,但因多鰭數增加了等效通道寬度,提升了多重鰭結構整體元件電性。對元件進行熱載子效應測試後,多重鰭結構有較佳元件可靠度,原因在於多重鰭結構通道間有耦合效應的發生。
元件材料從早期的二氧化矽與複晶矽閘極結合轉變成高介電係數材料與金屬閘極的製程,氮化鈦(TiN)及氮化鉭(TaN)為最有可能的金屬材料選擇,我們發現這兩項材料在不同堆疊厚度下會對元件特性產生影響。在TiN/TaN/TiAl閘極金屬堆疊結構中,鉭原子及鋁原子會擴散至高介電係數材料與金屬閘極之間形成偶極子,改變有效功函數,影響臨界電壓。當閘極阻隔層(TiN/TaN)厚度越厚,越能防止鋁原子擴散至介面層,以阻止功函數往中能隙偏移。
進一步對不同金屬閘極厚度的元件做熱載子實驗,發現鉭原子擴散與二氧化鉿形成的氧化鉿鉭(Hf-Ta-O)可使矽-氧介面較完整,提升可靠度。而鋁原子擴散與二氧化鉿形成的氧化鉿鋁(Hf-Al-O)則會造成電性壓迫後臨界電壓偏移量增加。對元件施加不同電壓的熱載子實驗,亦得到氮化鉭層堆疊厚度較厚結構擁有較佳元件可靠度及穩定度。

In order to achieve better electrical characteristics and reliability, device material and structure are contineously improved. Progressively, traditional planar MOSFET has been replaced by FinFET devices. In this work, N-type FinFETs with 20nm channel length are investigated.
FinFET developed from double gate to tri-gate single-fin structure, followed by multi-fin structure, which is investigated in this work. It is found that multi-fin structure provides better device performance than single-fin structure due to increased effective gate width, although the capability to control the gate is weaker under each fin for multi-fin structure. Furthermore, multi-fin structure shows better reliability under hot carrier injection (HCI) stress, which may be attributed to the existing of coupling effects between neighboring fins in multi-fin structure.
Gate material has transformed from traditional SiO2/poly-Si gate to high-k/metal gate (HK/MG). TiN and TaN are two of the most potential candidates for metal gate. It is found that TiN and TaN with different stack thickness can affect device characteristics. For TiN/TaN/TiAl metal gate stack, Ta and Al atoms will diffuse to the interface between metal gate and high-k layer to form dipoles, which can change the effective work function (EWF) and threshold voltage (VTH). When the barrier layer TiN/TaN becomes thicker, the Al diffusion to interface and EWF shift to mid-gap can be prevented.
Moreover, devices with different gate stack thickness have been characterized under HCI stress. It is suggested that Ta atoms diffuse into HfO2 to form Hf-Ta-O, which results in high-quality Si-O interface and impoves reliability. While the diffusion of Al atoms easily form Hf-Al-O, which induces more VTH shift after HCI stress. Different HCI stress voltages were further performed and the conclusion is similar that devices with thicker TaN stack show better reliability and stability.

摘要
Abstract
誌謝
目錄
圖目錄
第一章 緒論
1.1 研究背景與動機
1.2 文獻探討
1.3 論文架構
第二章 元件基本量測與結果分析
2.1 FinFET元件製程
2.1.1 實驗儀器之簡介
2.1.2 量測數據之處理
2.2 量測方法與實驗步驟
2.3 元件基本電性量測之實驗設計
2.3.1 ID-VG特性曲線
2.3.2 IG-VG特性曲線
2.3.3 ID-VD特性曲線
2.4 基本電性量測參數分析
2.4.1 臨界電壓(VTH)
2.4.2 轉移電導(GM)
2.4.4 飽和電流(ID,sat)
2.5 元件可靠度量測理論
2.5.1 熱載子效應(Hot Carrier Effect)
第三章 不同鰭數目之元件基本電性分析與可靠度研究
3.1 不同鰭數目之元件基本電性分析
3.1.1 不同鰭數目基本電性量測實驗設計
3.1.2 不同鰭數目之元件電性分析
3.2 不同鰭數目之元件可靠度研究
3.2.1 熱載子效應實驗設計
3.2.2 熱載子效應實驗結果分析
第四章 不同金屬閘極材料結構之元件基本電性分析與可靠度研究
4.1 不同金屬閘極材料結構之元件基本電性分析
4.1.1 不同金屬閘極材料結構基本電性量測實驗設計
4.1.2 不同金屬閘極材料結構之元件電性分析
4.2 不同金屬閘極材料結構之元件可靠度研究
4.2.1 熱載子效應實驗設計
4.2.2 熱載子效應實驗結果分析
第五章 結論與未來展望
5.1 結論
5.2 未來展望
參考文獻
[1]劉傳璽、陳進來,2013,半導體元件物理與製:程理論與實務,台北市:五南圖書出版股份有限公司
[2]洪嘉鍵、民103,不同尺寸之P型先進鰭式場效電晶體可靠度之研究,國立高雄大學電機工程研究所碩士論文
[3]Thomas Y. Hoffmann, Imec, Leuven, Belgium, 高介電係數介電層與金屬閘極的製程選擇:閘極先製還是閘極後製, 半導體科技雜誌, 2010.12.8.
[4]張鼎張、劉柏村譯著,施敏、伍國珏原著,半導體元件物理學第三版,新竹市:國立交通大學出版社
[5]曾俊元譯,施敏、李明逵著,2013,半導體元件物理與物理技術第三版,新竹市:國立交通大學出版社
[6]H. Wong, H. Iwai, “On the Scaling issues and high-k replacement of ultrathin gate dielectrics for nanoscale MOS transistors”, ELSEVIER Microelectronic Engineering, vol. 83, No. 10, pp. 1867-1904, 2006.
[7]G. Ribe, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, G. Ghibaudo, “Review on High-k Dielectrics Reliability Issues”, IEEE Transactions on Device and Materials Reliability, vol.5, No. 1, pp.5-19, 2005.
[8]S. Ramey, A. Ashutosh, C. Auth, J. Clifford, M. Hattendorf, J. Hicks, R. James, A. Rahman, V. Sharma, A. St Amour, C. Wiegand, “Intrinsic Transistor Reliability Improvements from 22nm Tri-Gate Technology”, IEEE International Reliability Physics Symposium, pp. 4C.5.1 - 4C.5.5, 2013.
[9]G. Saini and A. K Rana, “Physical Scaling Limits of FinFET Structure: A Simulation Study”, International Journal of VLSI Design & Communication Systems, vol. 2, pp. 26-35, 2011.
[10]Y.K. Choi, D. Ha, E. Snow, J. Boker, and T.J. King, “Reliability study of CMOS FinFETs” , IEDM Tech. Dig, pp. 177-180, 2003.
[11]鄭旭廷、民104,多重鰭數對P型鰭式場效電晶體之電性分析及可靠度研究,國立高雄大學電機工程研究所碩士論文
[12]謝國華,材料電子期刊第8期:IC展品可靠度簡介,新竹市:聯華電子股份有限公司
[13]B.S. Doyle, K. R. Mistry, and J. Faricelli, “Examination of the Time Power Law Dependencies in Hot Carrier Stressing of n-MOS Transistors” , IEEE Electron Device Lett., vol. 18, No. 2, pp. 51-53, 1997.
[14]D. S. Ang, S. C. S. Lai, G. A. Du, Z. Q. Teo, T. J. J. Ho, and Y. Z. Hu, “Effect of Hole-Trap Distribution on the Power-Law Time Exponent of NBTI” , IEEE Electron Device Lett., vol. 30, No. 7, pp. 751-753, 2009.
[15]鄭晃忠、陳冠能,2013,電子材料導論/台灣電子材料與元件協會編著,新北市:高立圖書有限公司
[16]Ma Xueli, Yang Hong, Wang Wenwu, Yin Huaxiang, Zhu Huilong, Zhao Chao, Chen Dapeng, and Ye Tianchun, “An effective work-function tuning method of nMOSCAP with high-k/metal gate by TiN/TaN double-layer stack thickness”, Chinese Institute of Electronics, vol.35, No. 9, pp. 096001-1 - 096001-4, 2014.
[17]Ma Xueli, Yang Hong, Wang Wenwu, Yin Huaxiang, Zhu Huilong, Zhao Chao, Chen Dapeng, and Ye Tianchun, “The effects of process condition of top-TiN and TaN thickness on the effective work function of MOSCAP with high-k/metal gate stacks”, Chinese Institute of Electronics, vol.35, No. 10, pp. 106002-1 - 106002-3, 2014.
[18]G. Molas, “Evaluation of HfAlO high-k materials for control dielectric applications in non-volatile memories”, ELSEVIER Microelectronic Engineering, vol.85, No. 12, pp. 2393–2399, 2008.

[19]Xiongfei Yu, Chunxiang Zhu, “Mobility Enhancement in TaN Metal-Gate MOSFETs Using Tantalum Incorporated HfO2 Gate Dielectric”, IEEE Electron Device Letters, vol.25, No. 7, pp. 501 - 503, 2004.
[20]Erhong Li, Elyse Rosenbaum, Jiang Tao, and Peng Fang, “Projecting lifetime of deep submicron MOSFETs”, IEEE International Integrated Reliability Workshop Final Report, pp. 95 - 97, 2000.
[21]Yi-Lin Yang, Wenqi Zhang, Tzu-Sung Yen, Jia-Jian Hong, Jie-Chen Wong, Chao-Chen Ku, Tai-Hsuan Wu, Tzuo-Li Wang, Chien-Yi Li, Bing-Tze Wu, Shih-Hung Lin, and Wen-Kuan Yeh, “Examination of hot-carrier stress induced degradation on fin field-effect transistor” Applied Physics Letters, vol.104, No. 8, pp. 083505-1 - 083505-3, 2014.
[22]Piyas Samanta, Chin-Lung Cheng, Yao-Jen Lee, and Mansun Chan, “Electrical stress-induced charge carrier generation/trapping related degradation of HfAlO / SiO2 and HfO2 / SiO2 gate dielectric stacks”, Journal of Applied Physics, vol.105, No. 12, pp. 124507-1 - 124507-8, 2009.
[23]J.H Han, Choong-Ho Lee, Choong-Ho Lee, Yang-Kyu Choi, “A Comprehensive Study of Hot-Carrier Effects in Body-Tied FinFETs”, Extended Abstracts of the 2005 International Conference on Solid State Devices and Materials, pp. 876 - 877, 2005.
[24]Sang-Yun Kim, “Impact Ionization Rate of the Bulk FinFETs with Fin Width and Bias Conditions”, IEEE International Semiconductor Device Research Symposium, pp. 408 - 409, 2005.
[25]Steve Chung, “The Path Finding of Gate Dielectric Breakdown in Advanced High-k Metal-Gate CMOS Devices”, IEEE International Conference onElectron Devices and Solid-State Circuits, pp. 360 - 364, 2015.
[26]葉文冠、陳柏穎、翁俊仁, 2011,積體電路製程技術與品質管理,台北市:東華書局
[27]陳映雅、民104,不同金屬閘極TaN厚度及不同鰭數目之N型鰭式場效電晶體可靠度之分析,國立高雄大學電機工程研究所碩士論文
[28]柯建村,楊智偉,許家福,2015,專利CN 104979391 A:半導體元件及其製作方法,新竹市:聯華電子股份有限公司
[29]Mohith Verghese, 應用於金屬閘極整合的原子層沉積, 半導體科技雜誌, 2012.12.19.
[30]Angada B. Sachid, Sourabh Khandelwal and Chenming Hu, “Body–Bias Effect in SOI FinFET for Low–Power Applications: Gate Length Dependence”, IEEE VLSI-TSA, pp. 1 - 2, 2014.
[31]Fu-Chieh Hsu, “An analytical breakdown model for short-channel MOSFET's”, IEEE Transactions on Electron Devices, vol. 29, No. 11, pp. 1735 - 1740, 1982.
[32]P. Chaparala, J. Shibley, P. Lim, “Projecting lifetime of deep submicron MOSFETs”, IEEE Transactions on Electron Devices, vol. 48, No. 4, pp. 671 - 678, 2001.
[33]V. Narendar, Ramanuj Mishra, Sanjeev Rai, Nayana R and R. A. Mishra, “Threshold Voltage Control Schemes in FINFETS”, International Journal of VLSI design & Communication Systems, Vol.3, No.2, pp. 175 - 191, 2012.
[34]Manorama, Pavan Shrivastava, Saurabh Khandelwal, Shyam Akashe, “Threshold Voltage Control through Multiple Supply for Low Power IG-FinFET Circuit”, International Journal of Computer Applications, Vol.78, No.8, pp. 11 - 15, 2013.
[35]A. T. Putra, T. Tsunomura, A. Nishida, S. Kamohara, K. Takeuchi, T. Hiramoto, “Impact of fixed charge at MOSFETs’ SiO2/Si interface on Vth variation”, IEEE International Conference on Simulation of Semiconductor Processes and Devices, pp. 25 - 28, 2008.
[36]Takashi Ando, “Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or Interfacial Layer Scavenging?” Materials, pp. 478 - 500, 2012. 
[37]T. Tsunomura, A. Nishida, F. Yano, A. T. Putra, K. Takeuchi, S. Inaba, S. Kamohara, K. Terada, T. Hiramoto, T. Mogami, “Analyses of 5σ Vth fluctuation in 65nm-MOSFETs using takeuchi plot”, IEEE Symposium on VLSI Technology, pp. 156 - 157, 2008.
[38]A. Paul, A. Bryant, T. B. Hook, C. C. Yeh, V. Kamineni, J. B. Johnson, N. Tripathi, T. Yamashita, G. Tsutsui, V. Basker, T. E. Standaert, J. Faltermeier, B. S. Haran, S. Kanakasabapathy, H. Bu, J. Cho, J. Iacoponi, M. Khare, “Comprehensive study of effective current variability and MOSFET parameter correlations in 14nm multi-fin SOI FINFETs”, IEEE International Electron Devices Meeting, pp. 13.5.1 - 13.5.4, 2013.
[39]M. Cho, G. Hellings, A. Veloso, E. Simoen, Ph. Roussel, B. Kaczer, H. Arimura, W. Fang, J. Franco, P. Matagne, N. Collaert, D. Linten, A. Thean, “On and off state hot carrier reliability in junctionless high-K MG gate-all-around nanowires”, IEEE International Electron Devices Meeting, pp. 14.5.1 - 14.5.4, 2015.
[40]T. Ando1, B. Kannan, U. Kwon, W. L. Lai, B. P. Linder, E. A. Cartier, R. Haight, M. Copel, J. Bruley, S. A. Krishnan, and V. Narayanan, “Simple Gate Metal Anneal (SIGMA) Stack for FinFET Replacement Metal Gate toward 14nm and beyond”, IEEE VLSI Technology, pp. 1 - 2, 2014.
[41]Nathan Hui-Hsin Hsu, Jian-Wen You, Huan-Chi Ma, Shih-Ching Lee, Eliot Chen, L. S. Huang, Yao-Chin Cheng, Osbert Cheng, I. C. Chen, “Intrinsic Hot-Carrier Degradation of nMOSFETs by Decoupling PBTI Component in 28nm High-K/Metal Gate Stacks” , IEEE International Reliability Physics Symposium, pp. XT.13.1 - XT.13.4, 2012.
[42]E. Takeda, N. Suzuki, “Examination of hot-carrier stress induced degradation on fin field-effect transistor”, IEEE Electron Device Letters, vol.4, No. 4, pp. 111 - 113, 1983.
[43]Jin-Woo Han, Choong-Ho Lee, Donggun Park and Yang-Kyu Choi, “Parasitic S/D resistance effects on hot-carrier reliability in body-tied FinFETs”, IEEE Electron Device Letters, vol.27, No. 6, pp. 514 - 516, 2006.
[44]Jin-Woo Han, Choong-Ho Lee, Donggun Park and Yang-Kyu Choi, “Body Thickness Dependence of Impact Ionization in a Multiple-Gate FinFET”, IEEE Electron Device Letters, vol.28, No. 7, pp. 625 - 627, 2007.
[45]E. Miranda, K. L. Pey, R. Ranjan, C. H. Tung, “Analysis of the post-breakdown current in HfO2/TaN/TiN gate stack MOSFETs for low applied biases”, ELSEVIER Microelectronic Engineering, vol.84, No. 9-10, pp. 1960 - 1963, 2007.
[46]R Ranjan, KL Pey, CH Tung, “Substrate injection induced ultrafast degradation in HfO2/TaN/TiN gate stack MOSFET”, IEEE International Electron Devices Meeting, pp. 1 - 4, 2006.
[47]AF Bello, Abhijeet Paul and Hoon Kim, “Metal Gate (TiN, TiC, TaN) Film Stack Stress”, The Minerals, Metals & Materials Society, Vol. 44, No. 10, pp. 3236 - 3242, 20015.
[48]E. R. Hsieh, Y. L. Tsai, Steve S. Chung, C. H. Tsai, R. M. Huang, and C. T. Tsai, “The Understanding of Multi-level RTN in Trigate MOSFETs Through the 2D Profiling of Traps and Its Impact on SRAM Perform ance: A New Failure Mechanism Found”, IEEE International Electron Devices Meeting, pp. 19.2.1 - 19.2.4, 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊