[1]
David D. Awschalom and Michael E. Flatte, “Challenges for semiconductor spintronics,” Nat. Phys. 3, 153, 2007.
[2]
Yu A Bychkov and E I Rashba, “Oscillatory effects and the magnetic susceptibility of carriers in inversion layers,” J. Phys. C. 17, 6039, 1984.
[3]
David Sánchez, Llorenc Serra, and Mahn-Soo Choi, “Strongly modulated transmission of a spin-split quantum wire with local Rashba interaction,” Phys. Rev. B. 77, 035315, 2008.
[4]
A. V. Moroz and C. H. W. Barnes, “Effect of the spin-orbit interaction on the band structure and conductance of quasi-one-dimensional systems,” Phys. Rev. B. 60, November. 1999.
[5]
R. Winkler, “Rashba spin splitting in two-dimensional electron and hole systems,” Phys. Rev. B. 62, August. 2000.
[6]
Marco G. Pala, Michele Governale, Jürgen Konig, Ulrich Zülicke, Giuseppe Iannaccone, “Two-dimensional hole precession in an all-semiconductor spin field effect transistor,” Phys. Rev. B. 69, 045304, 2004.
[7]
D. Csontos and U. Zülicke, P. Brusheim and H. Q. Xu, “Landé-like formula for the g factors of hole-nanowire subband edges,” Phys. Rev. B. 78, 033307, 2008.
[8]
G. Dresselhaus, “Spin-Orbit Coupling Effects in Zinc Blende Structures,” Phys. Rev. 100, October. 1955.
[9]
B. Das, S. Datta, and R. Reifenberger, “Zero-field spin splitting in a two-dimensional electron gas,” Phys. Rev. B. 41, 8278, Apr. 1990.
[10]
G. Goldoni and A. Fasolino, “Hole states in quantum wells in high in-plane magnetic fields: Implications for resonant magnetotunneling spectroscopy,” Phys. Rev. B. 48, 4948, Aug. 1993.
[11]
Vladimir A. Sablikov and Yurii Ya. Tkach, “Evanescent states in two-dimensional electron systems with spin-orbit interactionand spin-dependent transmission through a barrier,” Phys. Rev. B. 76, 245321, Dec. 2007.
[12]
R. Cuan and L. Diago-Cisneros, “Hole spectra and conductance for quantum wire systems under Rashba spin-orbit interaction,” J. Appl. Phys. 110, 113705, Dec. 2011.
[13]
S. M. Frolov, S. Luscher, W. Yu, Y. Ren, J. A. Folk and W. Wegscheider, “Ballistic spin resonance,” Nature. 458, pp. 868-871, Apr. 2009.
[14]
R. Winkler, Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, STMP 191, VII–IX, 2003.
[15]
S. L. Chuang, Physics of Optoelectronic Devices, page 129, 1995.
[16]
A. Srinivasan, L. A. Yeoh, O. Klochan, T. P. Martin, J. C. H. Chen, A. P. Micolich, A. R. Hamilton, D. Reuter and A. D. Wieck, “Using a Tunable Quantum Wire To Measure the Large out-of-Plane Spin Splitting of Quasi Two-Dimensional Holes in a GaAs,” Nano Lett. 13, pp. 148-152, Dec. 2013.
[17]
M. Kohda, V. Lechner, Y. Kunihashi, T. Dollinger, P. Olbrich, C. Sch¨onhuber, I. Caspers, V. V. Bel’kov, L. E. Golub, D. Weiss, K. Richter, J. Nitta, and S. D. Ganichev, “Gate-controlled persistent spin helix state in (In,Ga)As quantum wells,” Phys. Rev. B. 86, 081306, Aug. 2012.
[18]
Xianbo Xiao, Zhaoxia Chen, Wenjie Nie, Guanghui Zhou, and Fei Li, “Rashba-Zeeman-effect-induced spin filtering energy windows in a quantum wire,” J. Appl. Phys. 115, 223709, June.2014.
[19]
余書睿,P型單晶鍺奈米線傳輸受應變作用下能帶結構的影響,碩士論文,交通大學電子物理研究所 2013.。[20]
Mitsuru Sugawara, Niroh Okazaki, Takuya Fujii, and Susumu Yamazaki, “Conduction-band and valence-band structures in strained In1-xGax/Inp quantum wells on (001) InP substrates,” Phys. Rev. B. 48, April. 1993
[21]
Woon-Ho Seo and John F. Donegan, “6x6 effective mass Hamiltonian for heterostructures grown on (11N).-oriented substrates,” Phys. Rev. B. 68, 075318, August. 2003.
[22]
O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band kp theory,” Phys. Rev. B. 59, September. 1998.
[23]
Antonio Luque, Aleksandr Panchak , Alex Mellor , Alexey Vlasov , Antonio Martí, Viacheslav Andreev, “Comparing theLuttinger–Kohn–Pikus–Bir and the Empiric K P Hamiltonians in quantum dot inter mediate band solar cells manufactured in zincblende semiconductors,” Solar Energy Materials & Solar Cells. 141, 2015.
[24]
E P O’Reilly, “Valence band engineering in strained-layer structures,” Sernicond. Sci. Technol. 4, 1989.