跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 05:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳聖壬
研究生(外文):CHEN, SHENG-JEN
論文名稱:P型量子通道的自旋與應變效應
論文名稱(外文):Spin and Strain Effects in P-type Quantum Channels
指導教授:唐士雄
指導教授(外文):TANG, CHI-SHUNG
口試委員:關肇正連啟翔
口試委員(外文):KAUN, CHAO-CHENGLIEN, CHI-HSIANG
口試日期:2017-01-20
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:機械工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:120
中文關鍵詞:量子通道自旋軌道交互作用賽曼應變
外文關鍵詞:Quantum ChannelSpin-orbit InteractionZeemanStrain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
我們計算具有拉什巴自旋軌道交互作用(Rashba spin-orbit interaction, R-SOI) 之準一維電洞系統的能帶結構和電導,並且考慮施加一個磁場所感應之賽曼(Zeeman)效應。最後再分析施加不同方向的單軸應變對能帶結構的影響。Zeeman效應會使能帶上下分裂,而R-SOI會導致電洞能譜左右分裂。我們研究具有賽曼以及R-SOI的P型量子通道,在Zeeman和R-SOI不為零時,量子化電導將會出現一異常的峰值,然而,只有輕電洞會出現電導異常峰而不是重電洞。此電導的不規則特徵之穩定性可以通過操縱Zeeman、Rashba參數和電洞奈米通道寬度來進行調整。當R-SOI為強耦合,並且在一固定磁場時,SO能隙不會隨著Rashba參數的大小而有所變化。考慮P型量子通道施加應變自旋軌道作用且在傳輸方向施加單軸拉伸應變時,其輕重電洞能隙(lh-hh gap)會增加,若是將單軸拉伸應變施加在通道方向,其輕重電洞能隙會下降,且會出現能帶反交叉(anti-crossing)現象。我們分析出P型量子通道受應變效應而使輕重電洞能隙下降的極值為應變正負2%。
We calculate the band structure and conductance of a p-type quasi-one- dimensional system with a Rashba spin-orbit interaction (R-SOI) and a magnetic field induced Zeeman effect. The Zeeman effect causes energy band splitting longitudinally, and the R-SOI leads to a lateral hole spectroscopy division. In the presence of Rashba-Zeeman effect of the p-type quantum channel, the quantization conductance will be an anomalous peaks. However, only light hole occur anomalous peaks for the ballistic conductance rather than heavy holes. The robustness of the anomalous features in the ballistic conductance can be tuned by manipulating the effective Rashba and Zeeman parameters as well as the hole-nanowire width. When R-SOI is in the strong coupling regime for a given magnetic field, it is found that the SO gap size is not changed by the Rashba parameter. We consider that the p-type quantum channel can increase the light hole-heavy hole gap (lh-hh gap) when applying a strain spin-orbit with uniaxial tensile strain in the transport direction. If the uniaxial tensile strain is applied in the direction of the channel, the gap between light hole and heavy hole will decrease. We have analyzed the p-type quantum channel by the strain spin-orbit and the energy gap is not the extent of the endless, the extreme value of +-2%
摘要 III
Abstract IV
致謝 V
目錄 VI
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 一維量子理論 3
1.2.1 自由粒子的波動力學 3
1.2.2 位勢台階 6
第二章 能帶基礎理論 9
2.1 量子元件傳輸簡介 9
2.2 自旋軌道耦合交互作用 13
2.2.1 Rashba效應 15
2.2.2 Zeeman效應 17
2.3 量子通道元件簡介 19
2.3.1 N型量子通道能帶理論 21
2.3.2 一維輕電洞能帶理論 24
2.3.3 準一維輕電洞能帶理論 28
2.4 輕電洞自旋能帶理論 33
2.4.1 Rashba效應對輕電洞能帶結構的影響 34
2.4.2 Zeeman效應對輕電洞能帶的影響 40
2.4.3 Rashba-Zeeman效應對輕電洞能帶結構的影響 45
2.5 P型輕電洞閘控元件 52
2.5.1 P型輕電洞閘控元件的Rashba效應 54
2.5.2 P型輕電洞閘控元件的Zeeman效應 58
第三章 P型輕重電洞自旋元件 62
3.1 P型量子通道輕重電洞能帶理論 64
3.1.1 準一維通道中的電洞基本能帶 65
3.2 數值結果與分析 71
3.2.1 Zeeman效應對輕重電洞能帶結構的影響 71
3.2.2 Rashba效應對輕重電洞能帶結構的影響 75
3.2.3 Rashba-Zeeman效應對輕重電洞能帶結構的影響 77
第四章 P型輕重電洞耦合元件受應變之影響 84
4.1 [001]準一維量子通道的Hamiltonian 84
4.1.1 能量算符與其基底分析 84
4.1.2 [001]方向準一維電洞系統座標轉換 88
4.2 通道方向在[001]中所受應變影響的能帶結構 90
4.2.1 受應變影響的Hamiltonian 91
4.2.2 應力與應變關係式 93
4.2.3 [001]準一維輕重電洞受應變影響的能帶結構與分析 96
第五章 結論 112
參考文獻 114
附錄 117
附錄 A 電洞能量算符之合併計算過程 117
附錄 B 材料參數表 [14]: 120

[1]
David D. Awschalom and Michael E. Flatte, “Challenges for semiconductor spintronics,” Nat. Phys. 3, 153, 2007.
[2]
Yu A Bychkov and E I Rashba, “Oscillatory effects and the magnetic susceptibility of carriers in inversion layers,” J. Phys. C. 17, 6039, 1984.
[3]
David Sánchez, Llorenc Serra, and Mahn-Soo Choi, “Strongly modulated transmission of a spin-split quantum wire with local Rashba interaction,” Phys. Rev. B. 77, 035315, 2008.
[4]
A. V. Moroz and C. H. W. Barnes, “Effect of the spin-orbit interaction on the band structure and conductance of quasi-one-dimensional systems,” Phys. Rev. B. 60, November. 1999.
[5]
R. Winkler, “Rashba spin splitting in two-dimensional electron and hole systems,” Phys. Rev. B. 62, August. 2000.
[6]
Marco G. Pala, Michele Governale, Jürgen Konig, Ulrich Zülicke, Giuseppe Iannaccone, “Two-dimensional hole precession in an all-semiconductor spin field effect transistor,” Phys. Rev. B. 69, 045304, 2004.
[7]
D. Csontos and U. Zülicke, P. Brusheim and H. Q. Xu, “Landé-like formula for the g factors of hole-nanowire subband edges,” Phys. Rev. B. 78, 033307, 2008.
[8]
G. Dresselhaus, “Spin-Orbit Coupling Effects in Zinc Blende Structures,” Phys. Rev. 100, October. 1955.
[9]
B. Das, S. Datta, and R. Reifenberger, “Zero-field spin splitting in a two-dimensional electron gas,” Phys. Rev. B. 41, 8278, Apr. 1990.
[10]
G. Goldoni and A. Fasolino, “Hole states in quantum wells in high in-plane magnetic fields: Implications for resonant magnetotunneling spectroscopy,” Phys. Rev. B. 48, 4948, Aug. 1993.
[11]
Vladimir A. Sablikov and Yurii Ya. Tkach, “Evanescent states in two-dimensional electron systems with spin-orbit interactionand spin-dependent transmission through a barrier,” Phys. Rev. B. 76, 245321, Dec. 2007.
[12]
R. Cuan and L. Diago-Cisneros, “Hole spectra and conductance for quantum wire systems under Rashba spin-orbit interaction,” J. Appl. Phys. 110, 113705, Dec. 2011.
[13]
S. M. Frolov, S. Luscher, W. Yu, Y. Ren, J. A. Folk and W. Wegscheider, “Ballistic spin resonance,” Nature. 458, pp. 868-871, Apr. 2009.
[14]
R. Winkler, Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, STMP 191, VII–IX, 2003.
[15]
S. L. Chuang, Physics of Optoelectronic Devices, page 129, 1995.
[16]
A. Srinivasan, L. A. Yeoh, O. Klochan, T. P. Martin, J. C. H. Chen, A. P. Micolich, A. R. Hamilton, D. Reuter and A. D. Wieck, “Using a Tunable Quantum Wire To Measure the Large out-of-Plane Spin Splitting of Quasi Two-Dimensional Holes in a GaAs,” Nano Lett. 13, pp. 148-152, Dec. 2013.
[17]
M. Kohda, V. Lechner, Y. Kunihashi, T. Dollinger, P. Olbrich, C. Sch¨onhuber, I. Caspers, V. V. Bel’kov, L. E. Golub, D. Weiss, K. Richter, J. Nitta, and S. D. Ganichev, “Gate-controlled persistent spin helix state in (In,Ga)As quantum wells,” Phys. Rev. B. 86, 081306, Aug. 2012.
[18]
Xianbo Xiao, Zhaoxia Chen, Wenjie Nie, Guanghui Zhou, and Fei Li, “Rashba-Zeeman-effect-induced spin filtering energy windows in a quantum wire,” J. Appl. Phys. 115, 223709, June.2014.
[19]
余書睿,P型單晶鍺奈米線傳輸受應變作用下能帶結構的影響,碩士論文,交通大學電子物理研究所 2013.。
[20]
Mitsuru Sugawara, Niroh Okazaki, Takuya Fujii, and Susumu Yamazaki, “Conduction-band and valence-band structures in strained In1-xGax/Inp quantum wells on (001) InP substrates,” Phys. Rev. B. 48, April. 1993
[21]
Woon-Ho Seo and John F. Donegan, “6x6 effective mass Hamiltonian for heterostructures grown on (11N).-oriented substrates,” Phys. Rev. B. 68, 075318, August. 2003.
[22]
O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band kp theory,” Phys. Rev. B. 59, September. 1998.
[23]
Antonio Luque, Aleksandr Panchak , Alex Mellor , Alexey Vlasov , Antonio Martí, Viacheslav Andreev, “Comparing theLuttinger–Kohn–Pikus–Bir and the Empiric K  P Hamiltonians in quantum dot inter mediate band solar cells manufactured in zincblende semiconductors,” Solar Energy Materials & Solar Cells. 141, 2015.
[24]
E P O’Reilly, “Valence band engineering in strained-layer structures,” Sernicond. Sci. Technol. 4, 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top