跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/25 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雅筑
論文名稱:隔膜電解程序製備高濃度聚合鋁混凝劑之研究
論文名稱(外文):Preparing High Concentration Polymeric Aluminum Coagulant by Diaphragm Electrolytic Process
指導教授:鄭文伯鄭文伯引用關係
指導教授(外文):CHENG, WEN-PO
口試委員:陳鶴文余瑞芳鄭文伯
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:106
中文關鍵詞:淨水污泥聚合鋁酸化鋁鹽回收隔膜電解
外文關鍵詞:water purification sludgepolymeric aluminumacidificationrecovery aluminumdiaphragm electrolysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
由於淨水污泥(WPS)的資源化已逐步被各國環保法令所規範,因此淨水污泥的再利用方式也成為相關研究的重點,回收鋁鹽是淨水污泥再利用諸多選項之一,淨水污泥鋁鹽回收的方式大多以酸化、鹼化、膜和離子交換法,而本研究將以淨水污泥進行回收得到聚氯化鋁(Polyaluminum Chloride, PACl)。
聚氯化鋁在水處理的領域中為被廣泛應用的無機高分子混凝劑,長期以來有許多學者致力於研究如何改變製備程序以提升PACl組成成份中重要聚合物種Al13的含量。以現有研究結果,傳統之鹼滴法雖然可以製出高Al13含量的PAClbasic,但Al13含量會隨鋁濃度增加而降低。對於此現象,現有可行的解決方法是利用單一槽體電化學方法,但方法使用的鋁棒電極成本過高,無法被工業界廣為利用。因此本研究採用隔膜式電解法,以陽離子交換膜為中間薄膜,緩慢累積製備出高鋁濃度與高聚合鋁含量之PACl,且能降低氯化鋁的使用量。
本研究先以不同電流電解以了解鋁穿透率與電流的相關性,再依動力學計算出最終總鋁量與鹼基值(B=[OH]/[Al])為2.5時,最初陰極槽氯化鋁溶液添加量與所需電解時間,以電流15安培為例,隔膜電解與傳統鹼緩慢滴定法在濃度均為0.8M及B=2.5時之結果得知,隔膜電解法能得到69.16%為Alb的產物,但以鹼緩慢滴定法所測得Alb僅能達34.78%,此說明隔膜電解法確實能達到高鋁量與高Al13含量的PACl混凝劑。再以三種無機酸(硫酸、鹽酸、硝酸)進行溶出淨水污泥中的鋁量,過濾後添加氯化鋁以提升鋁濃度,替代原本陽極槽所使用的純氯化鋁溶液,再以電流15安培的隔膜式電解法進行電解,由結果顯示硝酸所溶出的淨水污泥再進行電解過後Alb含量能達到60%且總鋁濃度能達0.8M,此說明硝酸是在本研究最適合經由酸溶電解其結果與乾淨AlCl3得到結果相近,能得到高鋁量與高Al13含量的PACl混凝劑且降低氯化鋁的使用量。

Recovering resources from water purification sludge (WPS) has been gradually stipulated in environmental protection laws and regulations in many nations. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the use of acidification, alkalization, and the utility of inorganic acid - sulfuric acid, hydrochloric acid and sodium hydroxide solution to dissolved aluminum from WPS. In this study were focuses on not only recovery aluminum from WPS but also prepare it to form Polyaluminum Chloride (PACl) coagulant by a diaphragm electrolytic process.
PACl is broadly used for treating industrial wastewater or purifying drinking water. Many scholars commit their efforts to study the formation mechanisms of both polymeric aluminum compounds and high valance aluminum ions. They tried to find the method for increasing the proportion of polymeric aluminum or Al13 ion so that the coagulating efficiency may be improved. According to the documented research results, either alkaline can be used to prepare alkali PAClbasic with high Al13 contents. However, when PACl is produced through either method, Al13 concentration is inversely proportional to the Al3+ concentration. To direct produce high aluminum concentration and high-Al13-content PACl, a single-tank chemical electrolysis is the only effective method. In that method, metal aluminum is used as the electrode whose consumption causes significant cost so that this method is limited for broadly using in industry. Therefore, a diaphragm for water electrolysis was used in this invention. The anode and cathode cells were separated by a cation exchange membrane, which was made by a proton conducting solid electrolyte. The electrolysis took place after adding NaCl in both anode and cathode cells. First of all, the Al3+ ions were put in anode cell. During an electrolysis process the Al3+ ions will gradually through the cation exchange membrane to the cathodic cell and react with OH- ions that generated by the cathodic electrolysis reaction. Then, the polymerization reaction from aluminum hydrolysis should be presented and high aluminum concentration and high-Al13-content PACl is generated. In this study we found there is positive correlation between the electrolytic current and aluminum ions penetration rate. Based on the penetration rate, the reaction kinetic mechanisms will be proposed. Then, following this kinetic mechanism we can calculate the initial concentration of aluminum chloride in cathode cell, the final concentration of aluminum in anode cell, the amount of time required for electrolysis and predict the final basic value (B = [OH] / [Al]) of PACl product. For example, comparison with the diaphragm electrolysis (electric current I=15A) process and the slow alkali titration process in preparation PACl coagulants at 0.8M aluminum and B = 2.5 The results indicate that diaphragm electrolysis process can get 69.16% of Alb product, but the Alb percentage of alkali slow titration only 34.78%. These results confirm that the membrane electrolysis process can indeed reach the amount of high alumina content with high Al13 percentage PACl coagulant.
Then this study use three kinds inorganic acid – nitrate, hydrochloric acid and sulfuric acid - to dissolved the aluminum ion from WPS, after filtration these three dissolving solutions and added aluminum chloride to obtained enough concentration of aluminum. These three solutions were goes through the diaphragm electrolysis process at electric current 15A. The final result showed that the aluminum dissolved from WPS by nitrate can obtained a highest percentage Alb (60%) with 0.8M aluminum concentration, which means that nitrate is the most suitable acid in preparing high concentration polymeric aluminum coagulant by electrolytic process.

誌謝 2
摘要 4
Abstract 6
目錄 10
圖目錄 13
表目錄 16
第一章 前言 18
1.1研究緣起 18
1.2研究目的 19
第二章 文獻回顧 21
2.1聚氯化鋁混凝劑 21
2.1.1混凝機制 21
2.1.2聚氯化鋁之鋁型態分佈 24
2.2 Al13之生成特性 26
2.2.1鋁的水解聚合特性 26
2.2.2 Al13之生成機制 30
2.2.3高濃度Al13製備方式 34
2.3淨水污泥概況 41
2.3.1淨水污泥的組成 41
2.3.1含鋁淨水污泥 43
2.4淨水污泥鋁回收方式之比較 43
2.5隔膜式電解法 49
2.5.1電解 49
2.5.2離子交換膜 55
2.5.2.3陽離子交換膜性能 59
2.6鋁型態分析方法 60
2.6.1 原子吸收光譜儀 60
2.6.2 Al-Ferron逐時螯合比色法 63
第三章 研究方法 66
3.1 研究架構 66
3.2 實驗流程 68
3.2.1實驗器材與藥品 68
3.3 實驗方法 71
3.3.1淨水污泥 71
3.3.2無機酸溶出鋁鹽 73
3.3.3隔膜電解法 73
3.4溶出液之分析 75
3.4.1 pH值 75
3.4.2 Al-Ferron逐時螯合比色法 75
3.4.3鋁濃度之分析 76
第四章 結果與討論 77
4.1滴定法與隔膜式電解法比較 77
4.2隔膜電解法最佳實驗條件 84
4.2.1電流對鋁穿透率及鋁型態分佈之影響 84
4.2.2 以AlCl3電解製備PACl 89
4.2.3電解過程加酸提升PACl濃度 91
4.3以無機酸酸溶污泥電解製備PACl 93
4.3.1無機酸對鋁鹽溶出之影響 93
4.3.2無機酸溶出鋁鹽之電解 94
4.3.2.1無機酸溶出鋁鹽電解後總鋁量及穿透率 95
第五章 結論與建議 102
5.1結論 102
5.2建議 103
參考文獻 104


Akitt, J.W., Greenwood, N.N., Khandelwal, B.L., and Lester, G.D., 1972. 27Al nuclear magnetic resonance studies of the hydrolysis and polymerization of the hexa-aqua-aluminium(Ⅲ) cation. J. Chem. Soc. Dalton Trans., 604-610.
Akitt, J.W., and Elders, J.M., 1988. Multinuclear magnetic resonances studies of the hydrolysis of aluminum(III). VIII. Base hydrolysis monitored at very high magnetic field, J. Chem. Soc. Daltion Trans., 347-357.
Awad, Y. M., and Abuzaid, N. S., Electrochemical Oxidation of Phenol using graphite anodes separation Science and Technoligy, 1999, 34(4), 699-708.
Benefield, L. D., Joseph, J. F. and Weand, B. L., Process Chemistry for Water and Wastewater Treatment, Prentice-Hall Inc., N. J., 1982.
Bertsch, P.M., Thomas, G.W., and Barnhisel, R.I., 1986.Characterizatio of hydroxyl-aluminum solution by aluminum-27 nuclear magnetic resonance spectroscopy, Soil Sci. Soc. Am. J., 50, 825-830.
Bertsch, P.M., 1987.Conditions for Al13polymer formation in partially neutralized aluminum solutions, Soil Sci. Soc. Am. J., 51(3), 825-828.
Bi, S., Wang, C., Cao, Q., and Zhang, C., 2004. Studies on the mechanism of hydrolysis and polymerization of aluminum salts in aqueus solution: correlations between the “core-links” model and “cage-like” keggin-Al13 model,Coord. Chem. Rev., 248, 441-455
Cheng, W.P., Kao, Y.P., and Yu, R.F., 2008.A novel method for on-line evaluation of floc size in coagulation process,Water Res., 42(10-11), 2691-2697.
Dob’o, Z., Palot’as, A, B., Impact of the voltage fluctuation of the power supply on the efficiency of alkaline water electrolysis. International Journal of Hydrogen Energy. 2016, 1-8.
Feng, C.H., Tang, H.X., and Wang, D.S., 2007. Differentiation of hydroxyl-aluminum species at lower OH/Al ratios by combination of 27Al NMR and Ferron assay improved with kinetic resolution. Colloids Surf., A. 305,76-82.
Gao, B.Y., Chu, Y.B., Yue, Q.Y., Wang, B.J., and Wang, S.G., 2005. characterization and coagulation of a polyaluminum chloride (PACl) coagulant with high Al13 content,J. Environ. Manage., 76, 143-147.
Ivanova, E, H., Atomic Absorption Spectrometry. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Encyclopedia of Analytical Science (Second Edition).2005, 149-156.
Johansson, G., On the crystal structures of some basic aluminum salts, Acta Chem. Scand., 14: 771, 1960.
Johansson, G., The crystal structure of [Al2(OH)2(H2O)8](SO4)2‧2H2O and [Al2(OH)2(H2O)8](SeO4)2‧2H2O, Acta Chem. Scand., 16: 403, 1962.
Kiura, H., Sano, K., Morimatsu, S., Nakano, T., Morita, C., Yamaguchi, M., Maeda, T. and Katsuoka, Y., Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration, Journal of Microbiological Methods, 2002, 49, 285–293.
Nordstrom, D.K., and Stumm, W. 1996. Aggregation of silica dispersions by iron(Ⅲ), Sposito G, ed., 2, 39-80.
O'Melia C.R., 1972. Physicochemical process for water quality control.John Wiley & Sons.
Rausch, M.V. and Bale, H.D., 1964. Small-angle x-ray scattering from hydrolyzed Al nitrate solutions.J. Chem. Phys., 40, 3391.
Silva, R., Cadorin, L., Rubio., J.,2010. Sulphate ions removal from an aqueous solution: I. Co-precipitation with hydrolysed aluminum-bearing salts. Minerals Engineering.,23,1220-1226.
Water, D.N. and Heely, M.S., 1977. Ramie spectraorauous of hydrolysed aluminum (III) salts, J. Chem. Soc. Dalton Trans., 3, 243.
Wang, D.S., Xu, Y., Liu, H., Yiqiang, L. and Tang, H.X., 2003. Optimization on the separation and purification of Al13. Colloids Surf., A. 231,1-9.
Wang, D.S., Luan, Z.K. and Tang, H., 2003. Differences in coagulation effiiences between PACl and PICI, J. Am. Water works ass., 95(1), 79-86.
Yan, M.Y., Wang, D.S., Ni, J.R., Qu, J.H., Chow, C.W. K. and Liu, H.L., 2008. Mechanism of natural organic matter removal by polyaluminum chloride: effect of coagulant particle size and hydrolysis kinetics. Water Res., 42,3361-3370.
Yan, H., Xue, S., Wu, C., Wu, Y., Xu, T., Separation of NaOH and NaAl(OH)4 in alumina alkaline solution through diffusion dialysis and electrodialysis. Journal of Membrane Science. 2014, 469, 436-446.
Zhao, C., Zhang, J., Luan, Z., Peng, X. and Ren, X., Preparation of high concentration polyaluminum chloride with high content of Alb or Alc, J. Environ. Sci., 2009, 21, 1342-1346.
洪珮瑜,淨水污泥及其燒結體對銅、鉛離子之吸附反應,碩士論文,臺灣大學(2000)。
吳嘉文,檸檬酸根對Al13聚合物及鋁物種分化的影響,碩士論文,台灣大學(2000) 。
孫國鼎,水庫淤泥及淨水污泥再利用製磚之研究,碩士論文,交通大學(2001)。
曾豐年,利用火焰式原子吸收光譜儀以校正曲線法及標準添加法檢測市售五種礦物性中藥中鉛、鎘、銅及鎳重金屬含量,碩士論文,朝陽科技大學(2002)。
詹舒斐、陳仁仲、王今方,電解水基礎研究,節水季刊,第21期(2002)。
洪仁陽、張敏超、邵信、張王冠,淨水廠之汙泥減量技術,自來水會刊雜誌,22.61-66(2003)。
徐菁輿,製備電解強酸水及電解次氯酸水與其殺菌效果之探討,碩士論文,台灣大學(2005)。
湯鴻霄,無機高分子絮凝理論與絮凝劑(2006)。
胡靖宜,鋁水解物種對腐植酸混凝行為之影響,碩士論文,交通大學(2008)。
顏笠安,淨水場混凝污泥質量特性與脫水泥餅再利用初步評估,碩士論文,中央大學(2009)。
廖晉瓏,影響顆粒狀石墨電極電解2,4二氯酚因子之研究,碩士論文,逢甲大學(2010)。
傅啟華,淨水污泥鋁鹽回收影響因素之探討,碩士論文,聯合大學(2011)。
游乙剛,自來水廠淨水污泥壓濾式脫水之研究,碩士論文,朝陽科技大學(2012)。
程嬿儒,運用電透析技術現地去除地下水中硝酸鹽氮之研究,碩士論文,嘉南藥理科技大學(2012)。
田德慈,陽極氧化鋁模板輔助電鍍成長鎳奈米柱陣列應用於電解水製氫電極,碩士論文,南台科技大學(2012)。
吳志翔,運用電透析技術去除水中氨氮之可行性研究,碩士論文,嘉南藥理科技大學(2013)。
黃聖淵,離子交換與電解法回收鈀和釕之探討,碩士論文,義守大學(2014)
葉淑娟,電化學氧化法結合過硫酸鹽氧化程序應用於廢水中酚的去除,碩士論文,雲林科技大學(2014)。
鍾佳芸,以不同程序製備多元氯化鋁之鋁物種型態差異比較,碩士論文,聯合大學(2014) 。
吳政育,以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究,碩士論文,中央大學(2015) 。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top