跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘氏水
研究生(外文):Thi-Thuy Phan
論文名稱:水稻體內及根圈域中之鐵載體合成細菌族群在不同土壤中培植之關聯性研究
論文名稱(外文):Correlation Study of Siderophore-Producing Bacteria Population in the Rhizo- and Endosphere of Rice Cultivated in Different Soils
指導教授:楊禮亘
指導教授(外文):Li-Sen Young
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:生物科技系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:86
中文關鍵詞:葉綠素內生細菌根圈域水稻鐵載體
外文關鍵詞:ChlorophyllEndophytesIronRhizosphereRiceSiderophore
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此研究的主要目的是探討不同水稻品種及土壤環境中鐵載體合成細菌之數目/組成之相關性研究及其對水稻生長之影響。我們將水稻台稉8號及台中秈糯1號品種以無滅菌的酸土、近中性土及紅土於溫室環境中栽植30天。之後,於土樣、根圈土及水稻根莖組織中分析其總菌數及鐵載體合成細菌之數目。土樣中以近中性土所含之鐵載體合成細菌比例最高(5.47%),其次是酸土(3.58%)及紅土(0.27%)。水稻種子內的內生細菌擁有鐵載體合成能力的比例台稉8號高(31.79%)較台中秈糯1號高出約10倍(3.00%)。二水稻品種之根圈土以栽植於酸性土的總菌數最高(2.3×104 to 3.0×104 CFU g−1),其次是紅土(1.8×104 to 2.3×104 CFU g−1)及近中性土(1.4×104 to 1.6×104 CFU g−1)。相反的,在水稻根圈域中,無論品種,以近中性土含有最高數目的鐵載體合成細菌而最低的是紅土。綜而言之,無論在何種土壤或組織中,台稉8號具有較台中秈糯1號相對高的鐵載體合成細菌數目。我們由水稻組織中挑選了八株具最強鐵載體合成能力之細菌並以16S rDNA鑑定之,發現其中四株為Pantoea菌屬且均由種子中分離而得。水稻種子在表面殺菌後分別接種此八株菌並將5天齡小苗轉植在CAS培養基中。觀察發現經SPB處理的小苗其根部周圍透明圈顯著比未接種控制組為大,台稉8號根部周圍透明圈約較未接種控制組大14% 到28%,而台中秈糯1號為13% 到34%。以台中秈糯1號及紅土做盆栽實驗,接種LS-756鐵載體合成細菌能顯著提升水稻根長、地上部長度及乾重。除此之外,接種鐵載體合成細菌(除了LS-757)的水稻植株均有顯著提升葉綠素 a/b及總葉綠素總量的現象,分別為10% 到14%, 68% 到91% 及14% 到33%。以上結果證明了水稻的鐵載體合成細菌的數目及比例會被水稻遺傳背景及土壤環境條件所影響。此研究所累積的知識可提供一清楚的證據說明鐵載體合成細菌扮演水稻吸收鐵元素及與葉綠素含量之重要性及相關性。另外,亦可協助不同植物提升抗非生物性逆境之能力

The aim of this study is to understand the number and proportion of siderophore-producing bacteria (SPB) in relation to different rice genetic backgrounds and edaphic factors, as well as their effects on rice growth. Two rice Oryza sativa cvs., TK8 and TCN1, were cultivated in greenhouse condition using non-sterile acidic, near-neutral and red soils for 30 days. Total bacteria and SPB numbers were estimated from the bulk soils, rhizospheres, seed, root and shoot tissues of two rice cultivars. The percentage of SPB (SPB/total bacteria count x 100%) was highest in the near-neutral bulk soil at 5.47%, and relatively lower in acidic and red bulk soil at 3.58% and 0.27%, respectively. The percentage of SPB endophytes in TK8 seed (31.79%) was approximately ten-fold higher than in TCN1 seed (3.00%). The near-neutral rhizospheres showed the highest number of SPB in both rice varieties (1.4x102 CFU g−1 with TK8; 9.4x10 CFU g−1 with TCN1), and the lowest data was obtained from the red rhizospheres (1.1x10 CFU g−1 with TK8 and 1.5x10 CFU g−1 with TCN1). In all soil types and rice tissue types, the TK8 cultivar accommodated SPB endophytes higher than that of TCN1. By 16S rDNA sequence, a total of eight distinct bacterial endophytes exhibiting the strongest siderophore-producing activity were identified from various tissues of two rice varieties cultivated in three different soil-types. Bacteria belong to the genera Pantoea was predominant (n=4) and mostly isolated from seeds. Under sterile condition, rice seedlings inoculated with most SPBs formed a distinct orange halo on CAS medium significantly larger (from 14% to 28% with TK8, and from 13% to 34% with TCN1) than that in non-inoculated control. In the pot experiment performed with TCN1 and red soil, the inoculation of strain LS-756 showed significant increases in plant root length, shoot length and dry weight. In addition, inoculation of all strains (except LS-757) significantly enhanced chlorophyll a, chlorophyll b and total chlorophyll contents from 10% to 14%, 68% to 91% and 14% to 33%, respectively. The results proved that the number and proportion of SPBs associated with rice were influenced by host-genotype and edaphic factors. The knowledge gained from this study provided an important link about the role of SPB on rice iron uptake, the relationship with chlorophyll contents, and could further improve abiotic stress tolerances not only in rice, but also in other plants.

Abstract...i
中文摘要 (Chinese abstract)...iii
Acknowledgements...v
Table of contents...vi
List of Tables...viii
List of Figures ...ix
List of symbols ...x
Chapter 1 - Introduction...1
1.1 Overall View...1
1.2 Research Objectives...2
Chapter 2 - Literature Review...3
2.1 Introduction and definitions...3
2.1.1 Rhizosphere and Rhizobacteria...3
2.1.2 Endosphere and Endophytic colonization...5
2.1.3 Biodiversity of bacterial endophytes...6
2.2 The role of rhizo- and endosphere bacteria on soil nutrient availability and plant nutrient uptake...8
2.3 Rhizo- and endosphere bacteria in the rice plant...11
2.4 The iron deficiency of plant and role of siderophore-producing bacteria...13
2.4.1 The role of iron and effect of iron stress on plants...13
2.4.2 Siderophore biosynthesis and functions related to PGP...14
Chapter 3 - Materials and Methods...17
3.1 Materials...17
3.1.1 Experimental equipment...17
3.1.2 Chemical compounds...17
3.1.3 Soil samples and rice varieties...19
3.1.4 Plant nutrient...20
3.2 Methods...21
3.2.1. Medium substrates...21
3.2.2 Counting bacteria in bulk soils and seeds...24
3.2.3 Greenhouse cultivation and sample preparation to count endophytic bacteria in rhizo- and endosphere...25
3.2.4 Identification endophytic bacteria that possess the strongest siderophore-producing activity from rice tissues...26
3.2.5 Evaluate the effect of endophytic bacteria that possess the strongest siderophore-producing activity on rice growth...30
3.3 Statistical analysis...32
Chapter 4- Results...33
4.1 Characteristics of bacteria in three different bulk soils ...33
4.2 The effects of genetic background and edaphic factors on the total and siderophore-producing rhizobacteria...33
4.3 The effects of genetic background and edaphic factors on the total and siderophore-producing endophytes...34
4.4 Identification of bacteria that possess the strongest siderophore-producing activity from rice tissues...35
4.5 Effect of siderophore-producing bacterial strains on rice growth...35
Chapter 5- Discussion...38
5.1 Characteristics of bacteria in three different bulk soils ...38
5.2 The effects of genetic background and edaphic factors on the total and siderophore-producing rhizobacteria...38
5.3 The effects of genetic background and edaphic factors on the total and siderophore-producing endophytes...40
5.4 Rice bacterial endophytes that possess the strongest siderophore-producing activity...44
5.5 The effect of siderophore-producing bacteria on rice growth ...45
Chapter 6 – Conclusion ...50
Limitations &Future Researches...51
Reference...52
Appendix- Tables and Figures...68
Extended abstract...80
Curriculum Vitae (CV)...86

Abbas G, Saqib M, Akhtar J, Anwar ul Haq M (2015) Interactive effect of salinity and iron deficiency on different rice genotypes. Journal of Plant Nutrition and Soil Science, 178, 2, 306-311.
Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere, 117, 232-242.
Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science, 26, 1-20.
Ahmad F, Ahmad I (2013) Assessment of microbial assortment in agricultural soil of district Aligarh, Uttar Pradesh, India. World Journal of Applied Sciences and Research, 3, 1-8.
Andreote FD, Gumiere T, Durrer A (2014) Exploring interactions of plant microbiomes. Scientia Agricola, 71, 6, 528-539.
Araujo WL, Maccheroni W, Aguilar-Vildoso CI, Barroso P, Saridakis H, Azevedo J (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47, 229-236.
Baldani VLD, Baldani JI, Döbereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol. Fertil. Soils. 30, 485-491.
Belkhodja R, Morales F, Quilez F, Lopez-Millan AF, Abadia A, Abadia J (1998) Iron deficiency causes changes in chlorophyll fluorescence due to the reduction in the dark of the photosystem II acceptor side. Photosynth. Res. 56, 265-276.
Boddey RM, Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: Contributions and prospects for improvement. Plant Soil, 174, 195-209.
Boopathi E, Sankara RK (1999) A siderophore from Pseudomonas putida type A1: structural and biological characterization. Biochimica et Biophysica Acta, 1435, 30-40.
11.Botta AL, Santacecilia A, Ercole C, Cacchio P, Del Gallo M (2013) Invitro and invivo inoculation of four endophytic bacteria on Lycopersicon esculentum. New Biotechnology, 30, 666-674.
Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 74, 280-286.
Braun V, Hantke K (2007) Acquisition of iron by bacteria. Microbiol. Monogr, 6, 190-219.
Briat J, Dubos C, Gaymard F (2014) Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 1-8.
Carrillo-Castaneda G, Munoz J, Peralta-Videa JR, Gomez E, Gardea-Torresdey JL (2003) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J. Plant Nutr. 26, 1801-1814.
Cartieaux FP, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ, 26, 189-199.
Chandler RF (1979) Rice in the Tropics: A guide to the development of National Programs. International Agriculture Development Service. https://books.google.com.vn/books
Chen M, Zhu B, Lin L, Yang L, Li Y, An Q (2014) Complete genome sequence of Kosakonia sacchari type strain SP1T. Standards in Genomic Sciences, 9, 1311-1318.
Cheng Z, Park E, Glick BR (2007) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol, 53, 912-918.
Chi F, Shen SH, Cheng HP, Ying YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl. Environ. Microbiol, 71, 7271-7278.
Cho HS, Park SY, Ryu CM, Kim JF, Kim JG, Park SH (2007) Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. Microb. Ecol. 60, 14-23.
Chu BC, Herrero AG, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals, 23, 601-611.
Chuang SL, Lin GC (1992) Development of a new japonica rice varity “Taikeng 8”, Tainan District Agricultural Improvement Station, 207:22.
Compant S, Kaplan H, Sessitsch A, Nowak J, AitBarka E, Clément C (2008)
Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. Microbiology Ecology, 63, 84-93.
Compant S, Christophe C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry, 42, 669-678.
Conn VM, Franco CM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl. Environ. Microbiol, 70, 1787-1794.
Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. Microbiology Ecology, 56, 236-249.
Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu. Rev. Plant Biol, 54, 183-206.
Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere, 74, 19-25.
Dong ZM, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R (1994) A nitrogen-fixing endophyte of sugarcane stems. A new role for the apoplast. Plant Physiology, 105, 1139-1147.
Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res, 17, 7843-7853.
Feng Y, Shen D, Dong X, Song W (2003) In vitro symplasmata formation in the rice diazotrophic endophyte Pantoea agglomerans YS19. Plant Soil 255, 435-444.
Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J. Appl. Microbiol. 100, 938-945.
Fierer N, Jackson RB (2005) The diversity and biogeography of soil bacterial communities. PNAS, Vol. 103 (3), 626-631.
Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: Bacterial root endophytes and plant growth promotion. American Journal of Botany 100 (9), 1738-1750.
Gamit DA, Tank SK (2014) Effect of siderophore producing microorganism on plant growth of Cajanus cajan (Pigeon pea). International Journal of Research in Pure and Applied Microbiology, 4(1), 20-27.
37.Gaonkar T, Bhosle S (2013) Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere, 93, 1835-1843.
Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol. Lett, 296, 226-234.
Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Plant Sciences, 26, 227-242.
Goddard VJ, Bailey MJ, Darrah P, Lilley AK, Thompson IP (2001) Monitoring temporal and spatial variations in rhizosphere bacterial population diversity: A community approach for the improved selection of rhizosphere competent bacteria. Plant and Soil, 232, 181-193.
Grayston SJ, Wang S, Campbell CD, Edwards AC (1997) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. Vol 30 (3), 369-378.
Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha J (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J. Bacteriol, 183, 2634-2645.
Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245 (1), 83-93.
Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kleopper JW (1997) Bacterial endophytes in agricultural crops. Can.J.Microbiol, 43, 895-914.
Hallmann J (2001) Plant interactions with endophytic bacteria. Biotic Interactions in Plant-Pathogen Associations. CABI Publishing, Wallingford, UnitedKingdom, 87-119.
46.Hameed A, Yeh MW, Hsieh YT, Chung WC, Lo CT, Young LS (2015) Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress. Plant and Soil, Vol. 391.
Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol, 12, 259-266.
Hardoim PR, Leo S, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. All rights reserved. doi: 10.1016/j.tim.2008.07.008
Hardoim PR (2011) Bacterial endophytes of rice-their diversity, characteristics and perspectives. University of Groningen and the Faculty of Mathematics and Natural Sciences, 8.
50.Hardoim PR, Hardoim CC, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7: e30438.
Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Berkeley, California: College of Agriculture, University of California, California Agricultural Experiment Station Publications.
Ishimaru CA (1993) Biochemical and genetic analysis of siderophores produced by plant-associated Pseudomonas and Erwinia species. In Iron Chelation in Plants and Soil Microorganisms. Barton, LB and Hemming, BC (Eds.). Academic Press, Inc.
Jalal MAF, Van Helm D (1991) Isolation and spectroscopic identification of fungal siderophores. In CRC Handbook of Microbial Iron Chelates, 235-269.
James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol. Plant-Microbe Interact, 15, 894-906.
Joseph B, Ranjan Patra R, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cier arietinum L.). Int.J.Plant Prod.2, 141-152.
Joshi P, Tyagi V, Bhatt AB (2011) Characterization of rhizobacteria diversity isolated from Oryza sativa cultivated at different altitude in North Himalaya. Advances in Applied Science Research, 2 (4), 208-216.
Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regulation, 42, 239-244.
Kloepper JW, Gutierrez-Estrada A, McInroy JA (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Canadian Journal of Microbiology, 53, 159-167.
Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim. Biophys. Acta, 1778, 1781-1804.
Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol, 6, 1244-1251.
61.Kumar G, Kanaujia N, Bafana A (2012) Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiol Res, 167, 220-225.
62.Kumar U, Vithal kumar L, Annapurna K (2013) Antagonistic potential and functional diversity of endo and rhizospheric bacteria of basmati rice. Oryza, 50, 2, 162-168.
63.Ladygina N, Hedlund K (2010) Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biology and Biochemistry, Vol. 42 (2), 162-168.
64.Lankford CE, Byers BR (1973) Bacterial assimilation of iron. Crit. Rev. Microbio, 3, 273-331.
Lavakush, Yadav J, Verma JP, Jaiswal DK, Kumar A (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecological Engineering, 62, 123-128.
Li CH, Zhao MW, Tang CM, Li SP (2009) Population dynamics and identification of endophytic bacteria antagonistic toward plant-pathogenic fungi in cotton root. Microb Ecol 59 (2), 344-356.
Li TY, Zeng HL, Ping Y, Lin H, Fan XL, Guo ZG, Zhang C (2007) Construction of a stable expression vector for Leifsonia xyli subsp. cynodontis and its application in studying the effect of the bacterium as an endophytic bacterium in rice. FEMS Microbiol. Lett, 267, 176-183.
Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microbial Ecology, 61 (3), 606-618.
Louden BC, Haarmann D, Lynne AM (2011) Use of Blue Agar CAS Assay for siderophore detection. Journal of Microbiology & Biology Education.
Lucena JJ (2006) Synthetic iron chelates to correct iron deficiency in plants. In:Barton, L.L., Abadía, J. (Eds.), Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer, Netherlands, 103-128.
Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S, Morisaki H (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ, 21, 86-100.
Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ, 23, 2, 109-117.
Manwar AV, Khandelwal SR, Chaudhari BL, Meyer JM, Chincholkar SB (2004) Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Applied Biochemistry and Biotechnology, 118, 243-251.
Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London, UK.
Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, Vol. 33 (11), 1437-1445.
McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil, 173, 337-342.
Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev., 71, 413-451.
Mirzai A, Vazan S, Naseri R (2010) Response of yield and yield components of safflower (Carthamus tinctorius L.) to seed inoculation with Azotobacter and Azospirilium and different nitrogen levels under dry land condition. World Appl. Sci. J. 11, 1287-1291.
Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with the host plants. Front. Plant Sci. 4, 1-15.
Montano FP, Villegas CA, Bellogin RA, Cerro P, Espuny MR, Guerrero IJ, Baena FJL, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 169, 325-336.
Mori S, Nishizawa N, Hayashi H, Chino M, Yoshimura E, Ishihara J (1991) Why are young rice plants highly susceptible to iron deficiency? Plant soil, 130, 143-156.
Murgia I, Arosio P, Tarantino D, Soave C (2012) Biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci, 17 (1), 47-55.
Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Ui Gum K, Park KD, Young SC, Sa T, Caballero-Mellado J (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. System Appl. Microbiol., 28, 277-286.
Muthukumarasamy R, Kang UG, Park KD, Jeon WT, Park CY, Cho YS, Kwon SW, Song J, Roh DH, Revathi G (2007) Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on riceplants. J. Appl. Microbiol., 102, 981-991.
Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32, 429-448.
Naureen Z, Hafeez FY, Hussain J, Harrasi AA, Bouqellah N, Roberts MR (2015) Suppression of incidence of Rhizoctonia solani in rice by siderophore producing rhizobacterial strains based on competition for iron. European Scientific Journal, 11, 3, 186-207.
Neilands JB (1995) Siderophore: Structure and function of Microbial iron transport compounds. The Journal of biological chemistry, 270, 45, 26723-26726.
Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int. J. Phytoremediation, 2, 353-368.
Paul EA, Clark FE (1996) Soil microbiology and biochemistry. San Diego, CA: Academic Press, 340.
Pereira MP, Santos C, Gomes A, Vasconcelos MW (2014) Cultivar variability of iron uptake mechanisms in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 85, 21-30.
Pillay VK, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can. J. Microbiol, 43, 354-361.
Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci, 9, 263-266.
Prakamhang J, Minamisawa K, Teamtaisong K, Boonkerd N, Teaumroong N (2009) The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Applied Soil Ecology, 42, 141-149.
Prasad PVV (2003) Plant nutrition: iron chlorosis. In Encyclopedia of Applied Plant Sciences (Thomas, B. et al., eds), 649-656, London, UK, Elsevier.
Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B: Biol.Sci, 363, 447-465.
Omidvari M, Sharifi RA, Ahmadzadeh M, Dahaji PA (2010) Role of Fluorescent Pseudomonads siderophore to increase bean growth factors. Journal of Agricultural Science. 2, 3, 242-247.
Osórioa J, Osório ML, Correia PJ, de Varennes A, Pestana M (2014) Chlorophyll fluorescence imaging as a tool to understand the impact of iron deficiency and resupply on photosynthetic performance of strawberry plants. Scientia Horticulturae, 165, 148-155.
Quispel A (1992) A search of signals in endophytic microorganisms. In Molecular signals in plant–microbe communications. Edited by Verma DPS. CRC Press, Inc, 471-491.
Radzki W, Gutierrez Manero FJ, Algar E, Lucas Garcia JA, Garcia-Villaraco A, Ramos Solano B (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. DOI 10.1007/s10482-013-9954-9, 104:321–330.
Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Elsevier Ltd. All rights reserved. doi: 10.1016/j.tibtech.2009.12.002.
Rashid S, Trevor CC, Bernard RG (2012) Isolation and characterization of new plant growth–promoting bacterial endophytes. Applied Soil Ecology, 61, 217-224.
Reiter B, Bürgmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can. J. Microbiol, 49, 549-555.
Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust. J. Plant Physiol, 28, 829-836.
Rosas SB, Avanzin G, Carlier E, Pasluosta C, Pastor N, Rovera M (2009) Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biol Biochem, 41, 1802-1806.
Rosenblueth M, Martínez-Romero E (2006) Baterial endophytes and their interactions with hosts. The American Phytopathological Society, 19, 8, 827-837.
106.Ruiza D, Agaras B, de Werra P, Wall LG, Valverde C (2011) Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. J Microbiol, 49, 902-912.
Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2007) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett, 278, 1-9.
108.Sayyed RZ, Badgujar MD, Sonawane HM, Mhaske MM, Chincholkar SB (2005) Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads. Indian J. Biotech, 4, 484-490.
Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol, 141, 1-26.
Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Analytical Biochem, 160, 47-56.
Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L). Appl. Microbiol. Biotechnol, 79, 147-155.
Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiate L. Wilzeck). Soil Biol. Biochem, 35, 887-894.
Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3Aand PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiological Research, 158, 243-248.
Shibghatallah MAH, Khotimah SN, Suhandono S, Viridi S, Kesuma T (2013) Measuring leaf chlorophyll concentration from its color: A way in monitoring environment change to plantations. ArXiv:1305.1148v2 (physics.bio-ph).
Singh RK, Mishra RPN, Jaiswal HK, Kumar V, Pandey SP, Rao SB, Annapurna K (2006) Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr. Microbiol, 52, 117-122.
Sorensen J, Sessitsch A (2006) Plant-associated bacteria lifestyle and molecular interactions. Modern Soil Microbiology, 211-236.
Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod, 67, 257-268.
Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stem and foliage and their influence on host growth. Biol. Fertil. Soils, 25, 13-19.
119.Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16SrDNA sequence analysis. Microb Ecol, 55, 415-424.
Taghavi S, Weyens N, Vangronsveld J, Lelie D, Pirttila AM, Frank AC (2011) Improved phytoremediation of organic contaminants through enginerring of bacterial endophytes of trees. Endophytes of Forest Trees. Spinger, Netherlands, 205-216.
Tripathi M, Munot H, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization if siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Current Microbiology, 50, 5, 233-237.
Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K (2006) Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. Int. J. Med. Microbiol, 296, 513-520.
Van Overbeek LS, Van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanumtuberosum L.). FEMS Microbiol. Ecol, 64, 283-296.
Vega NWO (2007) A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Rev.Fac.Nal.Agr.Medellín, 60, 1, 3621-3643.
Verma S, Ladha J, Tripathi A (2001) Evaluation of plant growth promoting and ability of endophytic diazotrophs from deep water rice. Biotechnol 91, 127-141.
Vieire FCS, Nahas E (2005) Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiological Research, 160, 197-202.
Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals, 20, 379-392.
Winnepenninckx B, Backeljau T, De Wachter R (1993) Extraction of high molecular weight DNA from mollusks. Trends Genet, 9 (12), 407.
Wu J, Wang C, Zheng L, Wang L, Chen Y, Whelan J, Shou H (2001) Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition related genes in Oryza sativa L. Exp. Bot. 6, 667-674.
Xiao R, Kisaalita WS (1998) Fluorescent pseudomonad pyoverdines bind and oxidize ferrous ion. Appl. Environ. Microbiol, 64, 1472-1476.
Yang JH, Liu HX, Zhu GM, Pan YL, Guo JH (2008) Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. Appl Microbiol 104, 91-104.
Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Plant Science Conferences.
133.Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv.trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil, 194, 99-114.
Yasmin H, Bano A, Samiullah, Naz R, Farooq U, Nosheen A, Fahad S (2012) Growth promotion by P-solubilizing, siderophore and bacteriocin producing rhizobacteria in Zea mays L. Journal of Medicinal Plants Research, 6(3), 553-559.
Young LS, Hameed A, Peng SY, Shan YH, Wu SP (2013) Endophytic establishment of the soil isolate Burkholderia sp. CC-Al74 enhances growth and P-utilization rate in maize (Zea mays L.). Applied Soil Ecology, 40-47.
Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 138-145.
Zheng L, Narsai R, Wu J, Giraud E, He F, Cheng L, Wang F, Wu P, Whelan J, Shou H (2009) Physiological and transcriptome analysis of iron and phosphorous interaction in rice seedlings. Plant Physiol, 151, 262-274.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊