跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 11:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳威志
研究生(外文):Wei-Chih Chen
論文名稱:具有選區成長橫向氧化鋅奈米柱之場效電晶體特性研究
論文名稱(外文):Fabrication and Characterization of Field-Effect Transistors with Selectively Grown Lateral ZnO Nanorods
指導教授:姬梁文姬梁文引用關係
指導教授(外文):Liang-Wen Ji
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:57
中文關鍵詞:橫向氧化鋅
外文關鍵詞:Lateral zinc oxide nanorods
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將分為二個部份來討論,第一部分討論一維形式 (One-dimensional) 橫向氧化鋅奈米柱 (ZnO nanorods : ZnO NRs) 形貌,對不同濃度及生長時間下作形貌上分析。第二部分為選區成長橫向 (Selective grown lateral) 氧化鋅奈米柱之場效電晶體,此部分對元件作I-V量測與特性分析。

本實驗透過微影製程與射頻磁控濺鍍(radio frequency magnetron sputtering)系統將氧化鋅奈米柱之成核層部分分布在選區成長位置以利奈米柱作為橫向成長方向。我們使用低溫水溶液法製備橫向氧化鋅奈米柱且可自由控制直徑與依照光罩的限定長度來達到兩電極間之聯結,利用奈米柱單晶結構特性大幅增加電子的傳輸速度,大幅提升元件之特性。

本文研究使用鋁(Al)作為接觸電極,在材料部份經由X光繞射頻譜分析(XRD)、光激發光量測(Photoluminescence‚ PL)、高解析度穿透式電子顯微鏡(High-Resolution Transmission Electron Microscope, HR-TEM)、成分分析(Energy-Dispersive Spectrometry, EDS)、場發射電子顯微鏡(FE-SEM)以及微拉曼光譜(Micro-Raman)檢驗橫向奈米柱的品質,在濃度Zinc nitrate:HMTA=0.07:0.07與生長時間為6小時下時,有最佳的生長型態,柱長8.02µm 柱跟柱也相當茂密。

另一研究主題為場效電晶體(field-effect Transistor; FET),橫向氧化鋅奈米柱電晶體部分,我們亦比較氧化鋅在不同濃度生長下作為電子傳輸層,並量測其操作特性(VDS-IDS) 在不同閘極偏壓(VGS)下的元件操作特性,以固定VDS下轉移特性(VGS-IDS )曲線量測其臨界電壓Vth、轉移電導gm、汲極電流IDS ,發現橫向氧化鋅柱電晶體元件在濃度為Zinc nitrate:HMTA=0.07:0.07與生長時間為6小時下時,有較好輸出電流IDS為0.477 mA。當VGS=0 V時,電晶體已達關閉截止狀態,在VGS-IDS 與轉移電導特性曲線,VDS固定在3 V,發現當VGS=20 V時可獲得最大汲極電流IDS= 86.9 μA ,其最小IDS=0.2 nA,on/off ratio ~8.49×106,並在VGS=18.2 V 獲得最大轉移電導值約為11 μS。不論如何,在這些研究中經由簡單以及低成本的技術可製作出氧化鋅為基材的元件,在未來將具備發展整合光電積體電路(OEIC,OptoElectronic Integrated Circuits) 。
關鍵字:橫向氧化鋅奈米柱;場效電晶體



This study was divided into two parts to be discussed. First, the effect of different concentrations and growth time was studied on the surface morphological features of one-dimensional lateral zinc oxide nanorods (ZnO nanorods: ZnO NRs). Second, it was performed by the measurement of current-voltage (IV) and the analysis of characteristics of Field-Effect Transistors with selectively grown lateral ZnO Nanorods.

In order to grow on the lateral ZnO nanorods, the nucleation layer portion of the zinc oxide nanorods was distributed on selectively grown position, and the performance was shown through radio frequency magnetron sputtering system. We prepared lateral ZnO nanorods using low-temperature solution method, and its diameter can be freely controlled. Moreover, it can connect two electrodes according to the limited length of the mask. Based on the structural characteristics of single crystal nanorods, it can not only increase the electron transfer rate significantly, but also boost the properties of the element greatly.

Using aluminum (Al) as the contact electrode, the quality of lateral ZnO nanorods was examined by XRD、PL (Photoluminescence)、HR-TEM (High-Resolution Transmission Electron Microscope)、EDS (Energy-Dispersive Spectrometry)、FE-SEM and Micro-Raman. When the concentration ratio was Zinc nitrate: HMTA = 0.07: 0.07 under 6 h of the growth time, the performance was the best which the length of nanorods was 8.02µm in high density.

Furthermore, we also probe into FET (field-effect Transistor). The zinc oxide nanorods lateral transistor as an electron transport layer was be compared under different concentrations, and its operating characteristics (VDS-IDS) were measured at different gate bias voltage (VGS). Additionally, when it was under fixed condition (VGS-IDS、Vth、gm、IDS), the result was the better one which the IDS was 0.477 mA in Zinc nitrate: HMTA=0.07:0.07 of concentration under 6 h of the growth time. When VGS was 0 V, the transistor has closed. When VDS was fixed at 3 V in the transfer conductance curve, it was shown that the maximum IDS (IDS= 86.9 μA) and the minimum IDS (IDS=0.2 nA) were obtained (on/off ratio ~8.49×106). When VGS was 18.2 V, the maximum of transfer conductance value was about 11 μS. In conclusion, elements with zinc oxide as the material was produced via simple and low-cost technique, and it has high potential in the development of integrated optoelectronic integrated circuits (OEIC, OptoElectronic Integrated Circuits).

Keywords: Lateral zinc oxide nanorods;field-effect transistor


摘要.......i
Abstract.......iii
誌謝......v
目錄......vi
表目錄.......viii
圖目錄.......ix
第一章 緒論.......1
1-1 研究背景.......1
1-2 研究動機.......2
1-3 文獻回顧.......2
第二章 基礎原理.......3
2-1氧化鋅(Zinc oxide)材料簡介.......3
2-1-1氧化鋅材料結構與特性.......3
2-1-2二氧化矽結構與特性.......4
2-2電晶體工作原理與奈米柱成長機制.......4
2-2-1電晶體工作原理.......4
2-2-2金屬-氧化層-半導體場效電晶體工作原理及結構.......4
2-2-3 奈米柱實驗反應流程.......6
2-3場效電晶體之重要參數.......7
2-3-1 臨限電壓(threshold voltage, Vt).......7
2-3-2次臨界斜率(Subthreshold Swing, s).......7
2-3-2場效移動率(Field-effect mobility, μ)....... 7
第三章 實驗方法及步驟.......15
3-1實驗藥品與儀器.......15
3-2實驗架構.......17
3-3 製備具有選區成長橫向氧化鋅奈米柱.......17
3-3-1 橫向氧化鋅奈米柱實驗反應流程.......17
3-4橫向氧化鋅奈米柱分析.......19
3-4-1 場發射掃瞄式電子顯微鏡(Field-Emission Scanning Electron Microscope, FE - SEM).......19
3-4-2 成份分析(energy-dispersive spectrometry, EDS).......19
3-4-3 X光繞射分析儀(X - ray Diffraction, XRD).......19
3-4-4高解析度穿透式電子顯微鏡(High-Resolution Transmission Electron Microscope,HR-TEM).......20
3-4-5拉曼量測(micro-Raman spectroscopy, µRS).......21
3-4-6 光激發光量測(Photoluminescence‚PL).......21
第四章 實驗結果與討論.......25
4-1 橫向氧化鋅奈米柱材料分析.......25
4-1-1 特性分析.......26
4-2 單邊橫向奈米場效電晶體電性分析.......27
4-2-1電晶體電性分析.......27
第五章 結論.......50
5-1 結論.......50
5-2未來展望.......50
參考文獻.......51
Extended Abstract......53
簡歷......57



[1] C. F. Landes, S. Link, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Some properties of spherical and rod-shaped semiconductor and metal nanocrystals,”Pure and Applied Chemistry, vol. 74, no. 9, pp. 1675–1692, (2002)
[2] M. B. Mohamed, C. Burda, M. A. El-Sayed, Nano Lett.,“ Shape dependent ultrafast relaxation dynamics of CdSe nanocrystals: Nanorods vs nanodots,” Nano Letters, vol. 1, pp. 589, (2001)
[3] K. Hiruma et al,“Growth and optical-properties of nanometer-scale GAAS and INAS whiskers,” J. Appl. Phys, vol. 77 , pp. 447-462, (1995)
[4] Y. Li, G. W. Meng, L. D. Zhang, F. Phillipp,“Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,”Appl. Phys. Lett, vol. 76, pp. 2011-2013, (2000)
[5]呂婉華,鋁對生成一維氧化鋅結構的影響,國立交通大學材料科學與工程學系碩士論文 (2003)
[6] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H.Koinuma and Y. Segawa,” Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,“ Appl. Phys. Lett, vol. 72, pp. 3270-3272, (1998)
[7] D. C. Reynolds, D. C. Lock and B. Jogai,“Optically pumped ultraviolet lasing from ZnO,”Solid State Commun, vol. 99, 873-875, (1996)
[8] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto,“Optically pumped lasing of ZnO at room temperature,”Appl. Phys. Lett, vol.70,
pp. 2230-2232, (1997)
[9] C. Y. Lu, S. J. Chang, S.P. Chang, C. T. Lee, C. F. Kuo, H. M. Chang, Y. Z. Chiou, C. L. Hsu, I. C. Chen, “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates,” Appl. Phys. Lett. vol.89, pp.153101-153103, (2006)
[10] X.W. Jinhui Song Jin Liu, and Zhong Lin Wang,“Direct-Current Nanogenerator Driven by Ultrasonic Waves,” Science, pp. 316, (2007)
[11] J. Liu, P. Fei, J. Song, X. Wang, C. Lao,R. Tummala, and Z. L. Wang,“Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nano Lett, vol. 8, pp. 1, (2008)
[12] Y. Qin, X. Wang & Z.L.Wang,“Microfibre–nanowire hybrid structure for energy scavenging,” NATURE, vol. 451, pp. 14, (2008)
[13] C. Y. Yim, D. Y. Jeon, K. H. Kim and G. T. Kim,Y. S. Woo, S. Roth, J. S. Lee, S. Kim, J. Kor. Phys. Soc., 48, 1565 (2006).
[14] S. N. Cha, J. E. Jang, Y. Choi, G. A. J. Amaratunga, G. W. Ho, M. E. Welland, D. G. Hasko, D.-J. Kang, J. M. Kim, Appl. Phys. Lett., 89, 263102 (2006).
[15] S. Song, W. Ki Hong, S. S. Kwon, and T. Lee, Appl. Phys. Lett., 92, 263109 (2008).
[16] K. H. Seung, P. Inkyu, P. Heng, M. Nipun, R. S. Matthew, G. P. Costas, and P. P. Albert, Appl. Phys. Lett., 92, 154102 (2008)
[17] W. Park, II., C. H. Lee, J. H. Chae, D. H. Lee, and G. C. Yi, “Ultrafine ZnO nanowire electronic device arrays fabricated by selective metal-organic chemical vapor deposition” Small, vol. 5, pp. 181–184, (2009)
[18] K. Keem, D. Y. Jeong, S. Kim, M. S. Lee, I. S. Yeo, U. I. Chung, and J. T. Moon,
“Fabrication and device characterization of omega-shaped-gate ZnO nanowire field-effect transistors,”Nano Lett, vol. 6 , pp. 1454-1458, (2006)
[19] 汪建民,材料分析,中國材料科學學會,第二版,(2001)
[20]陳奕任,以旋轉圖不法成長銀奈米粒子散步氧化鋅博麼並應以提升三五族,國立國立虎尾科技大學光電工程系光電與材料科技系碩士論文(2014)
[21] 張斌程,研製具有選區成長橫向氧化鋅奈米柱之紫外光偵測器,國立國立虎尾科技大學光電工程系光電與材料科技系碩士論文(2015)
[22] 鄭偉繽,具有選區成長氧化鋅奈米橋樑之新穎元件的備製與特性研究,國立國立虎尾科技大學光電工程系光電與材料科技系碩士論文(2009)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top