|
[1]Ko, D. H., Tumbleston, J. R., Henderson, K. J., Euliss, L. E., DeSimone, J. M., Lopez, R., & Samulski, E. T. (2011). Biomimetic microlens array with antireflective “moth-eye” surface. Soft Matter, 7(14), 6404-6407. [2]Stavenga, D. G., Foletti, S., Palasantzas, G., & Arikawa, K. (2006). Light on the moth-eye corneal nipple array of butterflies. Proceedings of the Royal Society of London B: Biological Sciences, 273(1587), 661-667. [3]Chen, Y. C., Huang, Z. S., & Yang, H. (2015). Cicada-Wing-Inspired Self-Cleaning Antireflection Coatings on Polymer Substrates. ACS applied materials & interfaces, 7(45), 25495-25505. [4]Poitras, D., & Dobrowolski, J. A. (2004). Toward perfect antireflection coatings. 2. Theory. Applied optics, 43(6), 1286-1295. [5]Jeong, S. H., Kim, J. K., Kim, B. S., Shim, S. H., & Lee, B. T. (2004). Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating. Vacuum, 76(4), 507-515. [6]Zhao, J., & Green, M. (1991). Optimized antireflection coatings for high-efficiency silicon solar cells. Electron Devices, IEEE Transactions on, 38(8), 1925-1934. [7]Lin, Y. T., Lin, P. H., Hwang, S. L., Jeng, S. C., & Lin, Y. R. (2008). Ergonomic evaluation of electronic paper: Influences of anti‐reflection surface treatment, illumination, and curvature on legibility and visual fatigue. Journal of the Society for Information Display, 16(1), 91-99. [8]Galeotti, F., Trespidi, F., Timò, G., & Pasini, M. (2014). Broadband and Crack-Free Antireflection Coatings by Self-Assembled Moth Eye Patterns. ACS applied materials & interfaces, 6(8), 5827-5834. [9]Southwell, W. H. (1983). Gradient-index antireflection coatings. Optics letters, 8(11), 584-586. [10]Bernhard, C. G., & Miller, W. H. (1962). A corneal nipple pattern in insect compound eyes. Acta Physiologica Scandinavica, 56(3‐4), 385-386. [11]Yanagishita, T., Nishio, K., & Masuda, H. (2009). Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina. Applied physics express, 2(2), 022001. [12]Tsai, D. S., Lin, C. A., Lien, W. C., Chang, H. C., Wang, Y. L., & He, J. H. (2011). Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays. ACS nano, 5(10), 7748-7753. [13]Kim, D. S., Kim, D. J., Kim, D. H., Hwang, S., & Jang, J. H. (2012). Simple fabrication of an antireflective hemispherical surface structure using a self-assembly method for the terahertz frequency range. Optics letters, 37(13), 2742-2744. [14]Boden, S. A., & Bagnall, D. M. (2010). Optimization of moth‐eye antireflection schemes for silicon solar cells. Progress in Photovoltaics: Research and Applications, 18(3), 195-203. [15]Park, G. C., Song, Y. M., Ha, J. H., & Lee, Y. T. (2011). Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles. Journal of nanoscience and nanotechnology, 11(7), 6152-6156. [16]Kim, J. J., Lee, Y., Kim, H. G., Choi, K. J., Kweon, H. S., Park, S., & Jeong, K. H. (2012). Biologically inspired LED lens from cuticular nanostructures of firefly lantern. Proceedings of the National Academy of Sciences, 109(46), 18674-18678. [17]Nishikawa, N., Sakiyama, S., Yamazoe, S., Kojima, Y., Nishihara, E. I., Tsujioka, T., & Uchida, K. (2013). Photoinduced Self-Epitaxial Crystal Growth of a Diarylethene Derivative with Antireflection Moth-Eye and Superhydrophobic Lotus Effects. Langmuir, 29, 8164-8169. [18]Sim, D. M., Choi, M. J., Hur, Y. H., Nam, B., Chae, G., Park, J. H., & Jung, Y. S. (2013). Ultra‐High Optical Transparency of Robust, Graded‐Index, and Anti‐Fogging Silica Coating Derived from Si‐Containing Block Copolymers. Advanced Optical Materials, 1, 428-433. [19]Xu, Y., Wu, D., Sun, Y. H., Huang, Z. X., Jiang, X. D., Wei, X. F., Wu, Z. H. (2005). Superhydrophobic antireflective silica films: fractal surfaces and laser-induced damage thresholds. Applied optics, 44, 527-533. [20]Han, K. S., Shin, J. H., Yoon, W. Y., & Lee, H. (2011). Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography. Solar Energy Materials and Solar Cells, 95(1), 288-291. [21]Rao, J., Winfield, R., & Keeney, L. (2010). Moth-eye-structured light-emitting diodes. Optics Communications, 283(11), 2446-2450. [22]Bower, D. I., & Maddams, W. F. (1992). The vibrational spectroscopy of polymers. Cambridge University Press, 194-200. [23]Hughes, L. J., & Britt, G. E. (1961). Compatibility studies on polyacrylate and polymethacrylate systems. Journal of Applied Polymer Science, 5(15), 337-348. [24]Clogston, J. D., & Patri, A. K. (2011). Zeta potential measurement. Characterization of nanoparticles intended for drug delivery, 63-70. [25]Eeman, M., & Deleu, M. (2010). From biological membranes to biomimetic model membranes. Biotechnologie, Agronomie, Société et Environnement, 14(4), 719. [26]Ji, S., Song, K., Nguyen, T. B., Kim, N., & Lim, H. (2013). Optimal moth eye nanostructure array on transparent glass towards broadband antireflection. ACS applied materials & interfaces, 5(21), 10731-10737.
|