跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許鈞政
研究生(外文):Jyun-Jheng Hsu
論文名稱:仿蛾眼抗反射及疏水性透明薄膜之研製
論文名稱(外文):Moth-eye Inspired Transparent Film with Antireflective and Hydrophobic Characteristics
指導教授:游信和游信和引用關係
指導教授(外文):Hsin Her Yu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:26
中文關鍵詞:抗反射疏水性次波長結構Langmuir-Blodgett沉積法奈米壓印微影
外文關鍵詞:antireflectivehydrophobicitysubwavelength structureLangmuir-Blodgett (LB) depositionnano-imprint lithography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:517
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
夜行性的飛蛾為了避免複眼造成的反光被天敵發現,經長時間繁演後在其角膜表面形成了特殊的次波長的陣列結構,使其看起來漆黑異常,此種結構具有優異的抗反射功能。本論文為了仿製蛾眼之次波長結構,首先藉由Langmuir-Blodgett (LB)沉積法將聚苯乙烯奈米球排列成單層緊密陣列。接著透過氧氣電漿處理縮小聚苯乙烯奈米球的尺寸,使其形成單層非緊密排列陣列,以做為次波長結構模板之用。隨後再利用奈米壓印及微影技術將模板上的次波長結構轉印至玻璃基板表面,使其具有抗反射特性與疏水功能。透過本研究所提出之仿生蛾眼結構之製作方式,可快速製作出非緊密排列的單層奈米球陣列模板,使其達到抗反射與疏水性兼具之功能。如能將此種簡易製作技術應用於各種光電元件的製作上,勢必能減少能量的損耗,從而提高光的利用效益。未來在製作大面積的顯示器及太陽能板上,將具有相當大的應用價值。

In nature, in order to prevent be found by the predator, the eyes of night-flying moths have an antireflective ability after a long time evolutionarily. The surfaces of their eyes are covered with a layer of subwavelength structure that eliminate reflections. This nature allows their eyes looks pitch-black in the darkness and without any reflections to reveal their positions to potential predators. In this study we provided a novel procedures for manufacturing a non-close-packed monolayer polystyrene (PS) nanospheres array by combination of LB deposition technique and oxygen plasma treatment. Finally, an antireflective structure was replicated from the subwavelength structure onto the surface of glass substrate by nano-imprint lithography and it also processes hydrophobic property. The Fresnel reflection of replicated subwavelength structures is near the theoretical prediction from the effective medium theory model. Furthermore, the bionic moth-eyes structure can be applied in the fields of solar cells, monitors, LEDs, and other optical devices in the future.

中文摘要 ……………………………………………………………………… i
英文摘要 ……………………………………………………………………… ii
誌謝 ……………………………………………………………………… iii
目錄 ……………………………………………………………………… iv
表目錄 ……………………………………………………………………… v
圖目錄 ……………………………………………………………………… vi
第一章 緒論………………………………………………………………… 1
1.1 前言………………………………………………………………… 1
1.2 研究動機與目的…………………………………………………… 2
1.3 專利檢索…………………………………………………………… 3
第二章 研究方法與步驟…………………………………………………… 4
2.1 實驗步驟…………………………………………………………… 4
 2.1.1 聚苯乙烯奈米微球之合成………………………………………… 4
 2.1.2 次波長結構之製備………………………………………………… 4
2.2 實驗分析…………………………………………………………… 5
第三章 結果與討論………………………………………………………… 6
3.1 合成聚苯乙烯奈米微球之分析…………………………………… 6
 3.1.1 傅立葉轉換紅外線光譜分析……………………………………… 6
 3.1.2 奈米微球之平均粒徑分佈………………………………………… 6
3.2 單層聚苯乙烯奈米微球陣列沉積與分析………………………… 6
 3.2.1 親水性玻璃基板之表面改質與分析……………………………… 6
 3.2.2 LB沉積過程中基底液的改質與分析……………………………… 6
 3.2.3 分散溶劑的選擇與界面電位分析………………………………… 6
 3.2.4 單層聚苯乙烯奈米微球陣列的π-A等溫曲線圖………………… 7
3.3 次波長結構分析…………………………………………………… 7
 3.3.1 氧氣電漿處理時間對奈米微球粒徑的影響……………………… 7
 3.3.2 氧氣電漿處理時間對次波長結構之反射與穿透光譜…………… 8
 3.3.3 疏水性分析………………………………………………………… 8
第四章 結論………………………………………………………………… 9
第五章 未來展望…………………………………………………………… 10
參考文獻 ……………………………………………………………………… 11
英文論文大綱 ……………………………………………………………………… 21
簡歷 ……………………………………………………………………… 26


[1]Ko, D. H., Tumbleston, J. R., Henderson, K. J., Euliss, L. E., DeSimone, J. M., Lopez, R., & Samulski, E. T. (2011). Biomimetic microlens array with antireflective “moth-eye” surface. Soft Matter, 7(14), 6404-6407.
[2]Stavenga, D. G., Foletti, S., Palasantzas, G., & Arikawa, K. (2006). Light on the moth-eye corneal nipple array of butterflies. Proceedings of the Royal Society of London B: Biological Sciences, 273(1587), 661-667.
[3]Chen, Y. C., Huang, Z. S., & Yang, H. (2015). Cicada-Wing-Inspired Self-Cleaning Antireflection Coatings on Polymer Substrates. ACS applied materials & interfaces, 7(45), 25495-25505.
[4]Poitras, D., & Dobrowolski, J. A. (2004). Toward perfect antireflection coatings. 2. Theory. Applied optics, 43(6), 1286-1295.
[5]Jeong, S. H., Kim, J. K., Kim, B. S., Shim, S. H., & Lee, B. T. (2004). Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating. Vacuum, 76(4), 507-515.
[6]Zhao, J., & Green, M. (1991). Optimized antireflection coatings for high-efficiency silicon solar cells. Electron Devices, IEEE Transactions on, 38(8), 1925-1934.
[7]Lin, Y. T., Lin, P. H., Hwang, S. L., Jeng, S. C., & Lin, Y. R. (2008). Ergonomic evaluation of electronic paper: Influences of anti‐reflection surface treatment, illumination, and curvature on legibility and visual fatigue. Journal of the Society for Information Display, 16(1), 91-99.
[8]Galeotti, F., Trespidi, F., Timò, G., & Pasini, M. (2014). Broadband and Crack-Free Antireflection Coatings by Self-Assembled Moth Eye Patterns. ACS applied materials & interfaces, 6(8), 5827-5834.
[9]Southwell, W. H. (1983). Gradient-index antireflection coatings. Optics letters, 8(11), 584-586.
[10]Bernhard, C. G., & Miller, W. H. (1962). A corneal nipple pattern in insect compound eyes. Acta Physiologica Scandinavica, 56(3‐4), 385-386.
[11]Yanagishita, T., Nishio, K., & Masuda, H. (2009). Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina. Applied physics express, 2(2), 022001.
[12]Tsai, D. S., Lin, C. A., Lien, W. C., Chang, H. C., Wang, Y. L., & He, J. H. (2011). Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays. ACS nano, 5(10), 7748-7753.
[13]Kim, D. S., Kim, D. J., Kim, D. H., Hwang, S., & Jang, J. H. (2012). Simple fabrication of an antireflective hemispherical surface structure using a self-assembly method for the terahertz frequency range. Optics letters, 37(13), 2742-2744.
[14]Boden, S. A., & Bagnall, D. M. (2010). Optimization of moth‐eye antireflection schemes for silicon solar cells. Progress in Photovoltaics: Research and Applications, 18(3), 195-203.
[15]Park, G. C., Song, Y. M., Ha, J. H., & Lee, Y. T. (2011). Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles. Journal of nanoscience and nanotechnology, 11(7), 6152-6156.
[16]Kim, J. J., Lee, Y., Kim, H. G., Choi, K. J., Kweon, H. S., Park, S., & Jeong, K. H. (2012). Biologically inspired LED lens from cuticular nanostructures of firefly lantern. Proceedings of the National Academy of Sciences, 109(46), 18674-18678.
[17]Nishikawa, N., Sakiyama, S., Yamazoe, S., Kojima, Y., Nishihara, E. I., Tsujioka, T., & Uchida, K. (2013). Photoinduced Self-Epitaxial Crystal Growth of a Diarylethene Derivative with Antireflection Moth-Eye and Superhydrophobic Lotus Effects. Langmuir, 29, 8164-8169.
[18]Sim, D. M., Choi, M. J., Hur, Y. H., Nam, B., Chae, G., Park, J. H., & Jung, Y. S. (2013). Ultra‐High Optical Transparency of Robust, Graded‐Index, and Anti‐Fogging Silica Coating Derived from Si‐Containing Block Copolymers. Advanced Optical Materials, 1, 428-433.
[19]Xu, Y., Wu, D., Sun, Y. H., Huang, Z. X., Jiang, X. D., Wei, X. F., Wu, Z. H. (2005). Superhydrophobic antireflective silica films: fractal surfaces and laser-induced damage thresholds. Applied optics, 44, 527-533.
[20]Han, K. S., Shin, J. H., Yoon, W. Y., & Lee, H. (2011). Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography. Solar Energy Materials and Solar Cells, 95(1), 288-291.
[21]Rao, J., Winfield, R., & Keeney, L. (2010). Moth-eye-structured light-emitting diodes. Optics Communications, 283(11), 2446-2450.
[22]Bower, D. I., & Maddams, W. F. (1992). The vibrational spectroscopy of polymers. Cambridge University Press, 194-200.
[23]Hughes, L. J., & Britt, G. E. (1961). Compatibility studies on polyacrylate and polymethacrylate systems. Journal of Applied Polymer Science, 5(15), 337-348.
[24]Clogston, J. D., & Patri, A. K. (2011). Zeta potential measurement. Characterization of nanoparticles intended for drug delivery, 63-70.
[25]Eeman, M., & Deleu, M. (2010). From biological membranes to biomimetic model membranes. Biotechnologie, Agronomie, Société et Environnement, 14(4), 719.
[26]Ji, S., Song, K., Nguyen, T. B., Kim, N., & Lim, H. (2013). Optimal moth eye nanostructure array on transparent glass towards broadband antireflection. ACS applied materials & interfaces, 5(21), 10731-10737.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊