|
[1] P. K Basu, A. Khanna and Z. Hameiri, 2015, “The effect of front pyramid heights on the efficiency of homogeneously textured inline-diffused screen-printed monocrystalline silicon wafer solar cells”, Renewable energy, 78, pp. 590-598. [2] R. Chaoui, B. Mahmoudi and Y. S. Ahmed, 2013, “Improvement of screen-printed textured monocrystalline silicon solar cell performance by metal-assisted chemical etching”, Energy procedia, 36, pp. 253-259. [3] A. Bouyelfane and A. Zerga, 2014, “Ni/Cu electroplating a worthwhile alternative to use instead of Ag screen-printed front side metallization of conventional solar cells”, Materials science in semiconductor processing, 26, pp. 312-319. [4] Y. Shengzhao, N. Bay, M. Passig, D. Pysch, H. Kühnlein, H. Nussbaumer and P. Verlinden, 2015, “Industrial si solar cells with Cu-based plated contacts”, IEEE journal of photovoltaics, 5(6), pp. 1595-1600. [5] M. Rauer, C. Schmiga, J. Krause, R. Woehl, M. Hermle and S. W. Glunz, 2011, “Further analysis of aluminum alloying for the formation of p+ regions in silicon solar cells”, Energy procedia, 8, pp. 200-206. [6] E. Urrejola1, K. Peter, J. G. Reichenbach, E. Wefringhaus, H. Plagwitz and Gunnar Schubert, 2010, “Influence of the Al-Si alloy formation in narrow dielectric barrier opening on the specific contact resistance”, 25th European photovoltaic solar energy conference and exhibition, pp. 2176-2179. [7] R. Woehl, P. Gundel, J. Krause, K. Rühle, F. D. Heinz, M. Rauer, C. Schmiga, M. C. Schubert, W. Warta and D. Biro, 2011, “Microstructural and electrical properties of different-sized aluminum-alloyed contacts and their layer system on silicon surfaces”, IEEE transactions on electron devices, 95(8), pp. 441-447. [8] P. K Basu, A. Khanna, Z. Hameiri, 2011, “Evaluating the aluminum-alloyed p+-layer of silicon solar cells by emitter saturation current density and optical microspectroscopy measurements”, Renewable energy, 58(2), pp. 441-447. [9] R. Bock, J Schmidt and R Brendel, 2007, “Effective passivation of highly aluminum-doped p-type silicon surfaces using amorphous silicon”, Applied physics letters, 91(11). [10] M. Rauer, C. Schmiga, A. Tuschinsky, M. Glatthaar, S. W. Glunz, 2013, “Investigation of aluminum-boron doping profiles formed by coalloying from screen-printed pastes”, Energy procedia, 43, pp. 93-99. [11] R. Bock, J. Schmidt, S. Mau, B. Hoex and R. Brendel, 2010, “N-type silicon solar cells with surface-passivated screen-printed aluminium-alloyed rear emitter”, Renewable energy, 57(8), pp. 1966-1971. [12] M. Rauer, C. Schmiga, M. Hermle and S. W. Glunz, 2010, “Effectively surface-passivated aluminium-doped p+ emitters for n-type silicon solar cells”, Physica status solidi, 207(5), pp. 1249-1251. [13] J. Chen, Z. Du, B. Hoex, Z. H. J. Tey, A. G. Aberle, 2012, “Investigation of evaporated rear contacts for Al-LBSF silicon wafer solar cells”, Energy procedia, 25, pp. 10-18. [14] A. Bouyelfane and A. Zerga, 2014, “Ni/Cu electroplating, a worthwhile alternative to use instead of Ag screen-printed front side metallization of conventional solar cells”, Materials science in semiconductor processing, 26, pp. 312-319. [15] A. U. Rehman and S. H. Lee, 2014, “Review of the potential of the Ni/Cu plating technique for crystalline silicon solar cells”, Materials, 7, pp. 1318-1341. [16] S. Kluska, J. Bartsch, A. Büchler, G. Cimiotti, A. A. Brand, S. Hopman and M. Glatthaar, 2015, “Electrical and mechanical properties of plated Ni/Cu contacts for Si solar cells”, Energy procedia, 77, pp. 733-743. [17] V. A. Chaudhari and C. S. Solanki, “A novel two step metallization of Ni/Cu for low concentrator c-Si solar cells”, Solar energy materials & solar cells, 94(12), pp. 2094-2101. [18] M. Rauer, A. Mondon, C. Schmiga, J. Bartsch, M. Glatthaar and S. W. Glunz, 2013, “Nickel-plated front contacts for front and rear emitter silicon solar cells”, Materials energy procedia, 38, pp. 449-458. [19] J. D Lee, H. Y Kwon, M. J Kim, E. J Lee, H. S Lee and S. H. Lee, 2012, “The investigation of one step annealing for plated Ni/Cu contact solar cells”, Renewable energy, 42, pp.1-3. [20] A. Mondon, M. N. Jawaid, J. Bartsch, M. Glatthaar and S.W. Glunz, 2013, “Microstructure analysis of the interface situation and adhesion of thermally formed nickel silicide for plated nickel–copper contacts on silicon solar cells”, Solar energy materials & solar cells, 117, pp. 209-213. [21] S. Kluska, J. Bartsch, A. Büchler, G. Cimiotti, A. A. Brand, S. Hopman and M Glatthaar, 2015, “Improved adhesion of Ni/Cu/Ag plated contacts with thermally formed nickel silicon interface for c-Si solar cells”, Solar energy materials & solar cells, 77, pp. 733-743. [22] J. T. Horzel, Y. Shengzhao, N. Bay, M. Passig, D. Pysch, H. Kuhnlein, H. Nussbaumer and Pierre Verlinden, 2015, “Industrial Si solar cells with Cu-based plated contacts”, IEEE journal of photovoltaics, 5(6), pp. 1555-1600. [23] M. Kamp, J. Bartsch, R. Keding, M. Jahn, R. Müller, M. Glatthaar, S. W. Glunz and Ingo Krossing, 2014, “Plating processes on aluminum and application to novel solar cell concepts”, Energy procedia, 55, pp. 679-687. [24] N. Megouda, T. Hadjersi, S. Szunerits and R. Boukherroub, 2013, “Electroless chemical etching of silicon in aqueous NH4F/AgNO3/HNO3 solution”, Applied surface science, 284, pp. 894-899. [25] M Asad, M Kowsari, M. H. Sheikhi, 2015, “Enhancement of nano-/microtextured crystalline silicon solar cells efficiency using hydrogen plasma surface treatment”, Optik-international journal for light and electron optics, 126(24), pp. 5762-5766. [26] D. Li, L. Wang, D. Li, N. Zhou, Z. Feng, X. Zhong and D. Yang, 2013, “Formation of nanostructured emitter for silicon solar cells using catalytic silver nanoparticles”, Applied surface science, 264(1), pp. 621-624. [27] J. Shi, F. Xu, Z. Ma, P. Zhou, L. Zheng, J. Yang, D. Chen and Z. Jiang, 2013, “Nanoporous black multi-crystalline silicon solar cells realization of low reflectance and explanation of high recombination loss”, Materials science in semiconductor processing, 16(2), pp. 441-448. [28] J. Shi, F. Xu, P. Zhou, J. Yang, Z. Yang, D. Chen, Y. Yin, D. Chen, Z. Ma, 2013, “Refined nano-textured surface coupled with SiNx layer on the improved photovoltaic properties of multi-crystalline silicon solar cells”, Solid-state electronics, 85, pp. 23-27. [29] Z. Swiatek, E. Bełtowska, W. Maziarz and F. Krok, 2003, “Characterization and properties of a modified Si solar cell emitter by a porous Si layer”, Materials science and engineering, 101(1-3), pp. 291-296. [30] N. Marrero, R. G. Lemus, B. G. Diaz and D. Borchert, 2009, “Effect of porous silicon stain etched on large area alkaline textured crystalline silicon solar cells”, Thin solid films, 517(8), pp. 2648-2650. [31] L. Khezami, A. B. Jemai, R. Alhathlool and M. B. Rabha, 2016, “Electronic quality improvement of crystalline silicon by stain etching-based PS nanostructures for solar cells application”, Solar energy, 129, pp. 38-44. [32] K. Kholostov, L. Serenelli, M. Izzi, M. Tucci, M. Balucani, 2015, “Electroplated contacts and porous silicon for silicon based solar cells applications”, Materials science and engineering, 194, pp. 78-85. [33] M. B. Rabha and B. Bessaïs, 2010, “Enhancement of photovoltaic properties of multicrystalline silicon solar cells by combination of buried metallic contacts and thin porous silicon”, Solar energy, 84(3), pp. 486-491. [34] M. Saadoun, M. F. Boujmil, S. Aouida, M. B. Rabha and B. Bessais, 2011, “Porous silicon-based microtexturing of textured monocrystalline silicon solar cells”, Physica status solidi, 8(6), pp. 1869-1873. [35] R. Chaoui, A. Messaoud, 2007, “Screen-printed solar cells with simultaneous formation of porous silicon selective emitter and antireflection coating”, Desalination, 209(1-3), pp. 118-121. [36] I. Moon, K. Kim, M. Thamilselvan, Y. Kim, K. Han, D. Kyeong, T. Kwon, D. V. Ai, J. Lee, M. Ju, K. Lee and Junsin Yi, 2009, “Selective emitter using porous silicon for crystalline silicon solar cells”, Solar energy materials and solar cells, 93(6-7), pp. 846-850. [37] S. K. Dhungel, J. Yoo, K. Kim, S. Ghosh, S. Jung and J. Yi, 2008, “Study of electrical properties of oxidized porous silicon for back surface passivation of silicon solar cells”, Renewable energy, 33(2), pp. 282-285.
|