跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 16:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪國閔
研究生(外文):Guo-Min Hong
論文名稱:藉由濕蝕刻技術搭配鋁背表面電場增強電鍍銅電極應用於單晶矽太陽能電池之光電特性研究
論文名稱(外文):Enhanced Electroplating Copper Characteristics of Monocrystalline Silicon Solar Cells by Wet Etching and Aluminum Back-Surface-Field
指導教授:鄭錦隆
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:113
中文關鍵詞:濕蝕刻鋁背表面電場電鍍銅技術單晶矽太陽能電池光電特性
外文關鍵詞:Wet etchingaluminum back-surface-fieldelectroplating coppermonocrystalline silicon solar cellsphotovoltaic characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討濕蝕刻技術搭配鋁背表面電場增強具電鍍銅電極之單晶矽太陽能電池之光電特性研究,由於網印式單晶矽太陽能電池背電極之鋁膠串聯電阻不佳,因此本研究採用電鍍銅電極來取代鋁膠背電極。首先藉由鹽酸/雙氧水/水混合溶液搭配蝕刻溫度與時間,將背電極鋁膠蝕刻掉,留下鋁背表面電場當作電鍍銅的晶種層,接著探討濕蝕刻溶液(硝酸銀/氫氟酸/水混合液以及氫氟酸/硝酸/水混合液)之濃度、蝕刻時間等參數對鋁背表面電場表面形貌特性之影響,進一步改善電鍍銅之附著力,同時探討不同種類晶種層、晶種層的表面處理、電鍍鎳之電鍍時間、電鍍銅之電鍍時間等參數對單晶矽太陽能電池光電特性影響,晶種層種類包含鋁矽合金、蒸鍍鎳之鋁矽鎳合金及電鍍鎳之鋁矽鎳合金。
實驗結果顯示,當氫氟酸濃度為5%搭配硝酸濃度為5%,蝕刻時間為1分鐘時可有效蝕刻鋁矽層(Al-Si),留下背表面電場(BSF)當作晶種層,並且使表面粗糙化,而最佳之晶種層為鋁矽合金,搭配電鍍銅之電鍍時間為30分鐘可得最佳之金屬電極,其表面銅膜平均厚度為30μm,其太陽能電池光電轉換效率為15.9%、開路電壓為633 mV、短路電流密度為32.8 mA/cm2及平均附著力為1.451N。

In this thesis, enhanced photovoltaic characteristics of monocrystalline silicon solar cells (MSSCs) with electroplating copper were presented by wet etching and aluminum back-surface-field (Al-BSF). Since the series resistance of MSSCs with the aluminum pastes as rear electrode was not good, the electroplating copper electrode was used to replace the aluminum pastes. First, the aluminum pastes was moved by the HCl/H2O2/H2O mixed solution at 1:1:4, and the etching temperature of 75℃, as well as the etching time of 10 min. After aluminum paste removal, the Al-BSF layer as seed layer of the electroplating copper was investigated. Furthermore, the effects of the AgNO3/HF/H2O and the HF/NO3/H2O mixed solution on the surface morphologies of Al-BSF and adhesion between the Al-BSF and the electroplating copper were investigated. The etching parameters include the concentration of etching solution and etching time. Moreover, the effects of various seed layers, the surface treatment of the seed layer, the electroplating nickel and copper on photovoltaic characteristics of the MSSCs were achieved. Various seed layers include Al-Si alloy, evaporated Ni-Al-Si alloy and electroplating Ni-Al-Si alloy.
The results suggest that, the rough Al-BSF seed layer can be achieved by the hydrofluoric acid and the nitrate at the concentration of 5% and 5%, respectively. The etching time was 1 min. Compared with all seed layer, the Al-Si alloy seed layer is better than that the other ones. The thickness of the electroplating copper with 29 um was presented by the electroplating time at 30 min. Finally, a conversion efficiency of 15.9% with the open-circuit voltage (Voc) of 633 mV, the short-current density (Jsc) of 32.8 mA/cm2, and the average adhesion to 1.451N was demonstrated.

摘要....................................................i
Abstract...............................................ii
誌謝..................................................iii
目錄...................................................iv
表目錄.................................................vi
圖目錄................................................vii
第一章 緒論..............................................1
1.1電鍍技術搭配晶種層應用於矽基太陽能電池之文獻回顧..........1
1.2濕蝕刻技術應用於矽基太陽能電池之文獻回顧.................3
1.3研究動機..............................................5
1.4論文架構..............................................5
第二章 元件製程與特性量測..................................6
2.1探討不同種類晶種層搭配電鍍技術對於單晶矽太陽能電池之光電特性研究....................................................6
2.1.1正電極旋塗抗蝕刻阻擋膠...............................6
2.1.2鹽酸/雙氧水/水混和溶液蝕刻背電極鋁膠...................6
2.1.3浸泡Buffer Oxide Etch(BOE)去除表面氧化層.............7
2.1.4形成鋁矽合金及鋁矽鎳合金晶種層........................7
2.1.5背電極電鍍銅........................................7
2.2 探討網印式單晶矽太陽能電池之鋁矽合金/電鍍銅堆疊層及鋁矽鎳合金/電鍍銅堆疊層背電極效應..................................7
2.2.1正電極旋塗抗蝕刻阻擋膠...............................7
2.2.2鹽酸/雙氧水/水混和溶液蝕刻背電極鋁膠...................8
2.2.3浸泡Buffer Oxide Etch(BOE)去除鋁矽上的氧化層.........8
2.2.4背表面電場進行濕蝕刻.................................8
2.2.5背電極電鍍銅........................................8
2.2.6鍍錫銅帶焊接........................................9
2.2.7拉力機拉力量測......................................9
2.3太陽能光伏元件電性量測.................................9
2.3.1四點探針(Four-point Probe)量測......................9
2.3.2太陽能電池光電轉換效率量測............................9
2.4材料物性量測.........................................10
第三章 藉由濕蝕刻技術搭配鋁背表面電場增強具電鍍銅電極之單晶矽太陽能電池之光電特性研究...................................24
3.1探討不同種類晶種層搭配電鍍技術對於單晶矽太陽能電池之光電特性研究...................................................24
3.1.1 研究動機..........................................24
3.1.2 結果與討論........................................24
3.1.3 結論.............................................27
3.2藉由改變不同濃度與蝕刻時間之濕蝕刻技術對鋁背表面電場表面形貌特性之研究..............................................28
3.2.1 研究動機..........................................28
3.2.2 結果與討論........................................28
3.2.3 結論.............................................34
第四章 總結論與未來展望.................................106
4.1總結論.............................................106
4.2未來展望............................................106
參考文獻...............................................107
Extended Abstract.....................................110
簡歷..................................................113


[1] P. K Basu, A. Khanna and Z. Hameiri, 2015, “The effect of front pyramid heights on the efficiency of homogeneously textured inline-diffused screen-printed monocrystalline silicon wafer solar cells”, Renewable energy, 78, pp. 590-598.
[2] R. Chaoui, B. Mahmoudi and Y. S. Ahmed, 2013, “Improvement of screen-printed textured monocrystalline silicon solar cell performance by metal-assisted chemical etching”, Energy procedia, 36, pp. 253-259.
[3] A. Bouyelfane and A. Zerga, 2014, “Ni/Cu electroplating a worthwhile alternative to use instead of Ag screen-printed front side metallization of conventional solar cells”, Materials science in semiconductor processing, 26, pp. 312-319.
[4] Y. Shengzhao, N. Bay, M. Passig, D. Pysch, H. Kühnlein, H. Nussbaumer and P. Verlinden, 2015, “Industrial si solar cells with Cu-based plated contacts”, IEEE journal of photovoltaics, 5(6), pp. 1595-1600.
[5] M. Rauer, C. Schmiga, J. Krause, R. Woehl, M. Hermle and S. W. Glunz, 2011, “Further analysis of aluminum alloying for the formation of p+ regions in silicon solar cells”, Energy procedia, 8, pp. 200-206.
[6] E. Urrejola1, K. Peter, J. G. Reichenbach, E. Wefringhaus, H. Plagwitz and Gunnar Schubert, 2010, “Influence of the Al-Si alloy formation in narrow dielectric barrier opening on the specific contact resistance”, 25th European photovoltaic solar energy conference and exhibition, pp. 2176-2179.
[7] R. Woehl, P. Gundel, J. Krause, K. Rühle, F. D. Heinz, M. Rauer, C. Schmiga, M. C. Schubert, W. Warta and D. Biro, 2011, “Microstructural and electrical properties of different-sized aluminum-alloyed contacts and their layer system on silicon surfaces”, IEEE transactions on electron devices, 95(8), pp. 441-447.
[8] P. K Basu, A. Khanna, Z. Hameiri, 2011, “Evaluating the aluminum-alloyed p+-layer of silicon solar cells by emitter saturation current density and optical microspectroscopy measurements”, Renewable energy, 58(2), pp. 441-447.
[9] R. Bock, J Schmidt and R Brendel, 2007, “Effective passivation of highly aluminum-doped p-type silicon surfaces using amorphous silicon”, Applied physics letters, 91(11).
[10] M. Rauer, C. Schmiga, A. Tuschinsky, M. Glatthaar, S. W. Glunz, 2013, “Investigation of aluminum-boron doping profiles formed by coalloying from screen-printed pastes”, Energy procedia, 43, pp. 93-99.
[11] R. Bock, J. Schmidt, S. Mau, B. Hoex and R. Brendel, 2010, “N-type silicon solar cells with surface-passivated screen-printed aluminium-alloyed rear emitter”, Renewable energy, 57(8), pp. 1966-1971.
[12] M. Rauer, C. Schmiga, M. Hermle and S. W. Glunz, 2010, “Effectively surface-passivated aluminium-doped p+ emitters for n-type silicon solar cells”, Physica status solidi, 207(5), pp. 1249-1251.
[13] J. Chen, Z. Du, B. Hoex, Z. H. J. Tey, A. G. Aberle, 2012, “Investigation of evaporated rear contacts for Al-LBSF silicon wafer solar cells”, Energy procedia, 25, pp. 10-18.
[14] A. Bouyelfane and A. Zerga, 2014, “Ni/Cu electroplating, a worthwhile alternative to use instead of Ag screen-printed front side metallization of conventional solar cells”, Materials science in semiconductor processing, 26, pp. 312-319.
[15] A. U. Rehman and S. H. Lee, 2014, “Review of the potential of the Ni/Cu plating technique for crystalline silicon solar cells”, Materials, 7, pp. 1318-1341.
[16] S. Kluska, J. Bartsch, A. Büchler, G. Cimiotti, A. A. Brand, S. Hopman and M. Glatthaar, 2015, “Electrical and mechanical properties of plated Ni/Cu contacts for Si solar cells”, Energy procedia, 77, pp. 733-743.
[17] V. A. Chaudhari and C. S. Solanki, “A novel two step metallization of Ni/Cu for low concentrator c-Si solar cells”, Solar energy materials & solar cells, 94(12), pp. 2094-2101.
[18] M. Rauer, A. Mondon, C. Schmiga, J. Bartsch, M. Glatthaar and S. W. Glunz, 2013, “Nickel-plated front contacts for front and rear emitter silicon solar cells”, Materials energy procedia, 38, pp. 449-458.
[19] J. D Lee, H. Y Kwon, M. J Kim, E. J Lee, H. S Lee and S. H. Lee, 2012, “The investigation of one step annealing for plated Ni/Cu contact solar cells”, Renewable energy, 42, pp.1-3.
[20] A. Mondon, M. N. Jawaid, J. Bartsch, M. Glatthaar and S.W. Glunz, 2013, “Microstructure analysis of the interface situation and adhesion of thermally formed nickel silicide for plated nickel–copper contacts on silicon solar cells”, Solar energy materials & solar cells, 117, pp. 209-213.
[21] S. Kluska, J. Bartsch, A. Büchler, G. Cimiotti, A. A. Brand, S. Hopman and M Glatthaar, 2015, “Improved adhesion of Ni/Cu/Ag plated contacts with thermally formed nickel silicon interface for c-Si solar cells”, Solar energy materials & solar cells, 77, pp. 733-743.
[22] J. T. Horzel, Y. Shengzhao, N. Bay, M. Passig, D. Pysch, H. Kuhnlein, H. Nussbaumer and Pierre Verlinden, 2015, “Industrial Si solar cells with Cu-based plated contacts”, IEEE journal of photovoltaics, 5(6), pp. 1555-1600.
[23] M. Kamp, J. Bartsch, R. Keding, M. Jahn, R. Müller, M. Glatthaar, S. W. Glunz and Ingo Krossing, 2014, “Plating processes on aluminum and application to novel solar cell concepts”, Energy procedia, 55, pp. 679-687.
[24] N. Megouda, T. Hadjersi, S. Szunerits and R. Boukherroub, 2013, “Electroless chemical etching of silicon in aqueous NH4F/AgNO3/HNO3 solution”, Applied surface science, 284, pp. 894-899.
[25] M Asad, M Kowsari, M. H. Sheikhi, 2015, “Enhancement of nano-/microtextured crystalline silicon solar cells efficiency using hydrogen plasma surface treatment”, Optik-international journal for light and electron optics, 126(24), pp. 5762-5766.
[26] D. Li, L. Wang, D. Li, N. Zhou, Z. Feng, X. Zhong and D. Yang, 2013, “Formation of nanostructured emitter for silicon solar cells using catalytic silver nanoparticles”, Applied surface science, 264(1), pp. 621-624.
[27] J. Shi, F. Xu, Z. Ma, P. Zhou, L. Zheng, J. Yang, D. Chen and Z. Jiang, 2013, “Nanoporous black multi-crystalline silicon solar cells realization of low reflectance and explanation of high recombination loss”, Materials science in semiconductor processing, 16(2), pp. 441-448.
[28] J. Shi, F. Xu, P. Zhou, J. Yang, Z. Yang, D. Chen, Y. Yin, D. Chen, Z. Ma, 2013, “Refined nano-textured surface coupled with SiNx layer on the improved photovoltaic properties of multi-crystalline silicon solar cells”, Solid-state electronics, 85, pp. 23-27.
[29] Z. Swiatek, E. Bełtowska, W. Maziarz and F. Krok, 2003, “Characterization and properties of a modified Si solar cell emitter by a porous Si layer”, Materials science and engineering, 101(1-3), pp. 291-296.
[30] N. Marrero, R. G. Lemus, B. G. Diaz and D. Borchert, 2009, “Effect of porous silicon stain etched on large area alkaline textured crystalline silicon solar cells”, Thin solid films, 517(8), pp. 2648-2650.
[31] L. Khezami, A. B. Jemai, R. Alhathlool and M. B. Rabha, 2016, “Electronic quality improvement of crystalline silicon by stain etching-based PS nanostructures for solar cells application”, Solar energy, 129, pp. 38-44.
[32] K. Kholostov, L. Serenelli, M. Izzi, M. Tucci, M. Balucani, 2015, “Electroplated contacts and porous silicon for silicon based solar cells applications”, Materials science and engineering, 194, pp. 78-85.
[33] M. B. Rabha and B. Bessaïs, 2010, “Enhancement of photovoltaic properties of multicrystalline silicon solar cells by combination of buried metallic contacts and thin porous silicon”, Solar energy, 84(3), pp. 486-491.
[34] M. Saadoun, M. F. Boujmil, S. Aouida, M. B. Rabha and B. Bessais, 2011, “Porous silicon-based microtexturing of textured monocrystalline silicon solar cells”, Physica status solidi, 8(6), pp. 1869-1873.
[35] R. Chaoui, A. Messaoud, 2007, “Screen-printed solar cells with simultaneous formation of porous silicon selective emitter and antireflection coating”, Desalination, 209(1-3), pp. 118-121.
[36] I. Moon, K. Kim, M. Thamilselvan, Y. Kim, K. Han, D. Kyeong, T. Kwon, D. V. Ai, J. Lee, M. Ju, K. Lee and Junsin Yi, 2009, “Selective emitter using porous silicon for crystalline silicon solar cells”, Solar energy materials and solar cells, 93(6-7), pp. 846-850.
[37] S. K. Dhungel, J. Yoo, K. Kim, S. Ghosh, S. Jung and J. Yi, 2008, “Study of electrical properties of oxidized porous silicon for back surface passivation of silicon solar cells”, Renewable energy, 33(2), pp. 282-285.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊